Skip to main content

Part of the book series: Contributions in Mathematical and Computational Sciences ((CMCS,volume 9))

Abstract

Nonlinear Model Predictive Control (NMPC) is a feedback control technique that uses the most current state estimate of a nonlinear system to compute an optimal plan for the future system behavior. This plan is recomputed at every sampling time, creating feedback. Thus, NMPC needs to repeatedly solve a nonlinear optimal control problem (OCP). Direct multiple shooting is since long known as a reliable approach for discretization of OCPs. This is mainly due to the fact that the approach shows good contraction properties within the NMPC framework. Moreover, the procedure is easy to initialize and parallelize. In the context of real-time NMPC, the multiple shooting method was tailored to the Real-Time Iteration (RTI) scheme. This scheme uses a strategy known as Initial Value Embedding to deal efficiently with the transition from one optimization problem to the next. It performs two algorithmic steps in each sampling time, a long preparation phase and a short feedback phase to minimize the feedback time to the system. The two phases respectively prepare and solve a convex Quadratic Program (QP) that depends parametrically on the estimated system state. The solution of this QP delivers quickly a generalized tangential predictor to the solution of the nonlinear problem. Recent algorithmic progress makes the solution of NMPC optimization problems possible at sampling times in the milli- or even microsecond range on modern computational hardware. An essential part is the simulation of the nonlinear model together with the propagation of its derivative information. This article describes the developments and their efficient software implementations that made it possible to solve a classical NMPC benchmark problem within 1 μs sampling time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kirches, C., Wirsching, L., Sager, S., Bock, H.: Efficient numerics for nonlinear model predictive control. In: Diehl, M., Glineur, F.F., Michiels, E.J.W. (eds.) Recent Advances in Optimization and its Applications in Engineering, pp. 339–357. Springer, Berlin (2010)

    Chapter  Google Scholar 

  2. Diehl, M., Ferreau, H.J., Haverbeke, N.: Efficient numerical methods for nonlinear MPC and moving horizon estimation. In: Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences, vol. 384. pp. 391–417. Springer, Berlin (2009)

    Google Scholar 

  3. Diehl, M., Bock, H., Schlöder, J.: A real-time iteration scheme for nonlinear optimization in optimal feedback control. SIAM J. Control. Optim. 43(5), 1714–1736 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Diehl, M., Bock, H., Schlöder, J., Findeisen, R. Nagy, Z., Allgöwer, F.: Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. J. Process Control 12(4), 577–585 (2002)

    Article  Google Scholar 

  5. Vukov, M., Domahidi, A., Ferreau, H.J., Morari, M., Diehl, M.: Auto-generated algorithms for nonlinear model predicitive control on long and on short horizons. In: Proceedings of the 52nd Conference on Decision and Control (CDC) (2013)

    Google Scholar 

  6. Andersson, J.: A general-purpose software framework for dynamic optimization. Ph.D. thesis, Arenberg Doctoral School, KU Leuven, Department of Electrical Engineering (ESAT/SCD) and Optimization in Engineering Center, Kasteelpark Arenberg 10, 3001-Heverlee, Belgium (October 2013)

    Google Scholar 

  7. Ferreau, H., Kirches, C., Potschka, A., Bock, H., Diehl, M.: qpOASES: A parametric active-set algorithm for quadratic programming. Math. Program. Comput. 6(4), 327–363 (2014)

    Google Scholar 

  8. Ferreau, H.J., Bock, H.G., Diehl, M.: An online active set strategy to overcome the limitations of explicit MPC. Int. J. Robust Nonlinear Control 18(8), 816–830 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Domahidi, A., Zgraggen, A., Zeilinger, M., Morari, M., Jones, C.: Efficient Interior point methods for multistage problems arising in receding horizon control. In: IEEE Conference on Decision and Control (CDC) (Maui, HI, USA), pp. 668–674 (December 2012)

    Google Scholar 

  10. Frasch, J.V., Sager, S., Diehl, M.: A parallel quadratic programming method for dynamic optimization problems. Math. Program. Comput. 7(3) 289–329 (September 2015)

    Article  MathSciNet  Google Scholar 

  11. Frison, G., Sorensen, H., Dammann, B., Jorgensen, J.: High-performance small-scale solvers for linear model predictive control. In: Proceedings of 2014 European Control Conference (ECC), pp. 128–133 (June 2014)

    Google Scholar 

  12. Mattingley, J., Boyd, S.: Automatic code generation for real-time convex optimization. In: Convex Optimization in Signal Processing and Communications. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  13. Quirynen, R., Vukov, M., Zanon, M., Diehl, M.: Autogenerating microsecond solvers for nonlinear MPC: a tutorial using ACADO integrators. Optim. Control Appl. Methods (2014). http://onlinelibrary.wiley.com/doi/10.1002/oca.2152/abstract

  14. Vukov, M., Loock, W.V., Houska, B., Ferreau, H., Swevers, J., Diehl, M.: Experimental Validation of Nonlinear MPC on an Overhead Crane using Automatic Code Generation. In: The 2012 American Control Conference, Montreal, Canada (2012)

    Google Scholar 

  15. Quirynen, R., Vukov, M., Diehl, M.: Auto generation of implicit integrators for embedded NMPC with microsecond sampling times. In: Lazar, M., Allgöwer, F. (eds.) Proceedings of the 4th IFAC Nonlinear Model Predictive Control Conference (2012)

    Google Scholar 

  16. Quirynen, R., Gros, S., Diehl, M.: Efficient NMPC for nonlinear models with linear subsystems. In: Proceedings of the 52nd IEEE Conference on Decision and Control (2013)

    Google Scholar 

  17. Quirynen, R., Gros, S., Diehl, M.: Fast auto generated ACADO integrators and application to MHE with multi-rate measurements. In: Proceedings of the European Control Conference (2013)

    Google Scholar 

  18. Houska, B., Ferreau, H., Diehl, M.: An auto-generated real-time iteration algorithm for nonlinear MPC in the microsecond range. Automatica 47(10), 2279–2285 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Houska, B., Ferreau, H., Diehl, M.: ACADO toolkit – an open source framework for automatic control and dynamic optimization. Optim. Control Appl. Methods 32(3), 298–312 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Biegler, L.: An overview of simultaneous strategies for dynamic optimization. Chem. Eng. Process. 46, 1043–1053 (2007)

    Article  Google Scholar 

  21. Bock, H., Plitt, K.: A multiple shooting algorithm for direct solution of optimal control problems. In: Proceedings 9th IFAC World Congress Budapest, pp. 242–247. Pergamon Press, New York (1984)

    Google Scholar 

  22. Albersmeyer, J., Diehl, M.: The lifted Newton method and its application in optimization. SIAM J. Optim. 20(3), 1655–1684 (2010)

    Article  MathSciNet  Google Scholar 

  23. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II – Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin/Heidelberg (1991)

    Book  MATH  Google Scholar 

  24. Quirynen, R.: Automatic code generation of Implicit Runge-Kutta integrators with continuous output for fast embedded optimization. Master’s thesis, KU Leuven (2012)

    Google Scholar 

  25. Serban, R., Hindmarsh, A.: CVODES: The sensitivity-enabled ODE solver in SUNDIALS. In: Proceedings of IDETC/CIE (2005)

    Google Scholar 

  26. Wächter, A., Biegler, L.: On the Implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nocedal, J., Wright, S.: Numerical Optimization. In: Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  28. Bock, H. Recent advances in parameter identification techniques for ODE. In: Deuflhard, P., Hairer, E. (eds.) Numerical Treatment of Inverse Problems in Differential and Integral Equations. Birkhäuser, Boston (1983)

    Google Scholar 

  29. Tran-Dinh, Q., Savorgnan, C., Diehl, M.: Adjoint-based predictor-corrector sequential convex programming for parametric nonlinear optimization. SIAM J. Optim. 22(4), 1258–1284 (2012)

    Article  MathSciNet  Google Scholar 

  30. Frison, G., Jorgensen, J.: A fast condensing method for solution of linear-quadratic control problems. In: Proceedings of the 52nd IEEE Conference on Decision and Control (2013)

    Google Scholar 

  31. Leineweber, D. Efficient reduced SQP methods for the optimization of chemical processes described by large sparse DAE models. Fortschritt-Berichte VDI Reihe 3, Verfahrenstechnik, vol. 613. VDI Verlag, Düsseldorf (1999)

    Google Scholar 

  32. Axehill, D., Morari, M.: An alternative use of the riccati recursion for efficient optimization. Syst. Control Lett. 61(1), 37–40 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rao, C., Wright, S., Rawlings, J.: Application of interior-point methods to model predictive control. J. Optim. Theory Appl. 99, 723–757 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mattingley, J., Wang, Y., Boyd, S.: Code generation for receding horizon control. In: Proceedings of the IEEE International Symposium on Computer-Aided Control System Design (Yokohama, Japan) (2010)

    Google Scholar 

  35. Wang, Y., Boyd, S.: Fast model predictive control using online optimization. IEEE Trans. Control Syst. Technol. 18(2), 267–278 (2010)

    Article  Google Scholar 

  36. Kirches, C., Bock, H., Schlöder, J., Sager, S.: Block structured quadratic programming for the direct multiple shooting method for optimal control. Optim. Methods Softw. 26, 239–257 (2010)

    Article  Google Scholar 

  37. Zavala, V., Anitescu, M.: Real-time nonlinear optimization as a generalized equation. SIAM J. Control Optim. 48(8), 5444–5467 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ohtsuka, T., Kodama, A.: Automatic code generation system for nonlinear receding horizon control. Trans. Soc. Instrum. Control Eng. 38(7), 617–623 (2002)

    Article  Google Scholar 

  39. Chen, H., Allgöwer, F.: A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica 34(10), 1205–1218 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all reviewers for their valuable comments, which helped to improve this article. This research was supported by Research Council KUL: PFV/10/002 Optimization in Engineering Center OPTEC, GOA/10/09 MaNet and GOA/10/11 Global real-time optimal control of autonomous robots and mechatronic systems, KUL-BOF OT/10/035. Flemish Government: FWO: PhD/postdoc grants, FWO KAN2013 1.5.189.13, FWO-G.0930.13; IWT: PhD Grants, projects: Eurostars SMART; Belgian Federal Science Policy Office: IUAP P7 (DYSCO, Dynamical systems, control and optimization, 2012–2017); EU: FP7-SADCO (MC ITN-264735), FP7-TEMPO (MC ITN-607957), H2020-AWESCO (MC ITN-642682), ERC HIGHWIND (259 166). R. Quirynen holds a PhD fellowship of the Research Foundation– Flanders (FWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rien Quirynen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Quirynen, R., Vukov, M., Diehl, M. (2015). Multiple Shooting in a Microsecond. In: Carraro, T., Geiger, M., Körkel, S., Rannacher, R. (eds) Multiple Shooting and Time Domain Decomposition Methods. Contributions in Mathematical and Computational Sciences, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-23321-5_7

Download citation

Publish with us

Policies and ethics