Skip to main content

Neuroinflammatory Disorders

  • Chapter
  • First Online:
Book cover Neurodegenerative Disorders

Abstract

Multiple sclerosis (MS) is a chronic autoimmune disease of young people that affects the central nervous system and is clinically heterogenous. Both genetic and environmental factors predispose to its development. The pathological hallmark of disease is focal demyelination that affects both the cortical grey matter and the white matter tracts in the brain and spinal cord, characterised by perivascular infiltration of activated macrophages and T lymphocytes.

Diagnostic criteria that incorporate both clinical and magnetic resonance imaging (MRI) parameters have facilitated earlier diagnosis. In recent years several disease modifying therapies (DMTs) that target specific immune pathways have demonstrated increased efficacy in suppressing neuro-inflammation. Drugs with novel mechanisms of action including B-lymphocyte targeting are proving promising. Reliable biomarkers of treatment response, disease progression, and MS subtypes are being developed.

As the disease progressses the majority of MS patients develop irreversible disability due to axonal loss. To date no DMT has been proven to alter the course of the progressive phase of the disease. However, recent advances in glial biology have provided valuable insights into mechanisms of neuroprotection and neuroregeneration and clinical trials of agents that promote remyelination are underway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Suggested Reading

  • Albert M, Antel J, et al. Extensive cortical remyelination in patients with chronic multiple sclerosis. Brain Pathol. 2007;17(2):129–38.

    Article  PubMed  Google Scholar 

  • Bartos A, Fialova L, et al. Antibodies against light neurofilaments in multiple sclerosis patients. Acta Neurol Scand. 2007;116(2):100–7.

    Article  CAS  PubMed  Google Scholar 

  • Beecham AH, Patsopoulos NA, et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet. 2013;45(11):1353–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bo L, Vedeler CA, et al. Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult Scler. 2003a;9(4):323–31.

    Article  CAS  PubMed  Google Scholar 

  • Bo L, Vedeler CA, et al. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol. 2003b;62(7):723–32.

    Article  PubMed  Google Scholar 

  • Calabrese M, Filippi M, et al. Cortical lesions in multiple sclerosis. Nat Rev Neurol. 2010;6(8):438–44.

    Article  PubMed  Google Scholar 

  • Charcot JM. Lecture VI. Disseminated sclerosis. Pathological anatomy. Lectures on the diseases of the nervous system. London: The New Sydenham Society; 1887. p. 157–81.

    Google Scholar 

  • Compston A, Confavreux C, Lassmann H, et al. McAlpines multiple sclerosis. 4th ed. Edinburgh: Elsevier, Churchill Livingston; 2006.

    Google Scholar 

  • Cheng HH, Yi HS, et al. Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One. 2013;8(6):e64795.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cox MB, Cairns MJ, et al. MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood. PLoS One. 2010;5(8):e12132.

    Article  PubMed Central  PubMed  Google Scholar 

  • Crawford AH, Chambers C, et al. Remyelination: the true regeneration of the central nervous system. J Comp Pathol. 2013;149(2-3):242–54.

    Article  CAS  PubMed  Google Scholar 

  • Danborg PB, Simonsen AH, et al. The potential of microRNAs as biofluid markers of neurodegenerative diseases – a systematic review. Biomarkers. 2014;19(4):259–68.

    Article  CAS  PubMed  Google Scholar 

  • De Santis G, Ferracin M, et al. Altered miRNA expression in T regulatory cells in course of multiple sclerosis. J Neuroimmunol. 2010;226(1-2):165–71.

    Article  PubMed  Google Scholar 

  • Du C, Liu C, et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol. 2009;10(12):1252–9.

    Article  CAS  PubMed  Google Scholar 

  • Duncan ID, Brower A, et al. Extensive remyelination of the CNS leads to functional recovery. Proc Natl Acad Sci U S A. 2009;106(16):6832–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ehling R, Lutterotti A, et al. Increased frequencies of serum antibodies to neurofilament light in patients with primary chronic progressive multiple sclerosis. Mult Scler. 2004;10(6):601–6.

    Article  CAS  PubMed  Google Scholar 

  • Eikelenboom MJ, Petzold A, et al. Multiple sclerosis: neurofilament light chain antibodies are correlated to cerebral atrophy. Neurology. 2003;60(2):219–23.

    Article  CAS  PubMed  Google Scholar 

  • Fenoglio C, Cantoni C, et al. Expression and genetic analysis of miRNAs involved in CD4+ cell activation in patients with multiple sclerosis. Neurosci Lett. 2011;504(1):9–12.

    Article  CAS  PubMed  Google Scholar 

  • Fialova L, Bartos A, et al. Serum and cerebrospinal fluid light neurofilaments and antibodies against them in clinically isolated syndrome and multiple sclerosis. J Neuroimmunol. 2013;262(1-2):113–20.

    Article  CAS  PubMed  Google Scholar 

  • Fillatreau S, Sweenie CH, et al. B cells regulate autoimmunity by provision of IL-10. Nat Immunol. 2002;3(10):944–50.

    Article  CAS  PubMed  Google Scholar 

  • Franklin RJ, Ffrench-Constant C. Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci. 2008;9(11):839–55.

    Article  CAS  PubMed  Google Scholar 

  • Fraussen J, Claes N, et al. Targets of the humoral autoimmune response in multiple sclerosis. Autoimmun Rev. 2014;13(11):1126–37.

    Article  CAS  PubMed  Google Scholar 

  • Genain CP, Hauser SL. Experimental allergic encephalomyelitis in the New World monkey Callithrix jacchus. Immunol Rev. 2001;183:159–72.

    Article  CAS  PubMed  Google Scholar 

  • Gandhi R. miRNA in multiple sclerosis: search for novel biomarkers. Mult Scler. 2015;21:1095–1103.

    Google Scholar 

  • Guerau-de-Arellano M, Smith KM, et al. Micro-RNA dysregulation in multiple sclerosis favours pro-inflammatory T-cell-mediated autoimmunity. Brain. 2011;134(Pt 12):3578–89.

    Article  PubMed  Google Scholar 

  • Hafler DA, Compston A, et al. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med. 2007;357(9):851–62.

    Article  CAS  PubMed  Google Scholar 

  • Haghikia A, Hellwig K, et al. Regulated microRNAs in the CSF of patients with multiple sclerosis: a case-control study. Neurology. 2012;79(22):2166–70.

    Article  CAS  PubMed  Google Scholar 

  • Hampton DW, Serio A, et al. Neurodegeneration progresses despite complete elimination of clinical relapses in a mouse model of multiple sclerosis. Acta Neuropathol Commun. 2013;1(1):84.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hauser SL. The Charcot Lecture | beating MS: a story of B cells, with twists and turns. Mult Scler. 2015;21(1):8–21.

    Google Scholar 

  • Hauser SL, Waubant E, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358(7):676–88.

    Article  CAS  PubMed  Google Scholar 

  • Hauser SL, Chan JR, Oksenberg JR. Multiple sclerosis: prospects and promise. Ann Neurol. 2013;74(3):317–27. doi:10.1002/ana.24009.

    Article  CAS  PubMed  Google Scholar 

  • Jersild C, Fog T, et al. Histocompatibility determinants in multiple sclerosis, with special reference to clinical course. Lancet. 1973;2(7840):1221–5.

    Article  CAS  PubMed  Google Scholar 

  • Kappos L, Hartung HP, et al. Atacicept in multiple sclerosis (ATAMS): a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Neurol. 2014;13(4):353–63.

    Article  CAS  PubMed  Google Scholar 

  • Keller A, Leidinger P, et al. Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. PLoS One. 2009;4(10):e7440.

    Article  PubMed Central  PubMed  Google Scholar 

  • Khalil M, Enzinger C, et al. CSF neurofilament and N-acetylaspartate related brain changes in clinically isolated syndrome. Mult Scler. 2013;19(4):436–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kidd D, Barkhof F, et al. Cortical lesions in multiple sclerosis. Brain. 1999;122(Pt 1):17–26.

    Article  PubMed  Google Scholar 

  • Kuhle J, Leppert D, et al. Neurofilament heavy chain in CSF correlates with relapses and disability in multiple sclerosis. Neurology. 2011;76(14):1206–13.

    Article  CAS  PubMed  Google Scholar 

  • Kuhle J, Malmestrom C, et al. Neurofilament light and heavy subunits compared as therapeutic biomarkers in multiple sclerosis. Acta Neurol Scand. 2013a;128(6):e33–36.

    Article  CAS  PubMed  Google Scholar 

  • Kuhle J, Plattner K, et al. A comparative study of CSF neurofilament light and heavy chain protein in MS. Mult Scler. 2013b;19(12):1597–603.

    Article  PubMed  Google Scholar 

  • Kuhlmann T, Miron V, et al. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain. 2008;131(Pt 7):1749–58.

    Article  CAS  PubMed  Google Scholar 

  • Magliozzi R, Howell O, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain. 2007;130(Pt 4):1089–104.

    PubMed  Google Scholar 

  • Magliozzi R, Howell OW, et al. A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann Neurol. 2010;68(4):477–93.

    Article  CAS  PubMed  Google Scholar 

  • Martinelli-Boneschi F, Fenoglio C, et al. MicroRNA and mRNA expression profile screening in multiple sclerosis patients to unravel novel pathogenic steps and identify potential biomarkers. Neurosci Lett. 2012;508(1):4–8.

    Article  CAS  PubMed  Google Scholar 

  • Oh J, O’Connor PW. Novel and imminently emerging treatments in relapsing-remitting multiple sclerosis. Curr Opin Neurol. 2015;28(3):230–6.

    Article  CAS  PubMed  Google Scholar 

  • Palanichamy A, Jahn S, et al. Rituximab efficiently depletes increased CD20-expressing T cells in multiple sclerosis patients. J Immunol. 2014;193(2):580–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paraboschi EM, Solda G, et al. Genetic association and altered gene expression of mir-155 in multiple sclerosis patients. Int J Mol Sci. 2011;12(12):8695–712.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patsopoulos NA, Esposito F, et al. Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci. Ann Neurol. 2011;70(6):897–912.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peterson JW, Bo L, et al. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol. 2001;50(3):389–400.

    Article  CAS  PubMed  Google Scholar 

  • Pryce G, O’Neill JK, et al. Autoimmune tolerance eliminates relapses but fails to halt progression in a model of multiple sclerosis. J Neuroimmunol. 2005;165(1–2):41–52.

    Article  CAS  PubMed  Google Scholar 

  • Richert ND, Ostuni JL, et al. Serial whole-brain magnetization transfer imaging in patients with relapsing-remitting multiple sclerosis at baseline and during treatment with interferon beta-1b. AJNR Am J Neuroradiol. 1998;19(9):1705–13.

    CAS  PubMed  Google Scholar 

  • Salzer J, Svenningsson A, et al. Neurofilament light as a prognostic marker in multiple sclerosis. Mult Scler. 2010;16(3):287–92.

    Article  CAS  PubMed  Google Scholar 

  • Sawcer S, Franklin RJ, Ban M. Multiple sclerosis genetics. Lancet Neurol. 2014;13(7):700–9. doi:10.1016/S1474-4422(14)70041-9. Epub 2014 May 19.

    Article  CAS  PubMed  Google Scholar 

  • Sawcer S, Hellenthal G, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476(7359):214–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sievers C, Meira M, et al. Altered microRNA expression in B lymphocytes in multiple sclerosis: towards a better understanding of treatment effects. Clin Immunol. 2012;144(1):70–9.

    Article  CAS  PubMed  Google Scholar 

  • Silber E, Semra YK, et al. Patients with progressive multiple sclerosis have elevated antibodies to neurofilament subunit. Neurology. 2002;58(9):1372–81.

    Article  CAS  PubMed  Google Scholar 

  • Sondergaard HB, Hesse D, et al. Differential microRNA expression in blood in multiple sclerosis. Mult Scler. 2013;19(14):1849–57.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava R, Aslam M, et al. Potassium channel KIR4.1 as an immune target in multiple sclerosis. N Engl J Med. 2012;367(2):115–23.

    Article  CAS  PubMed  Google Scholar 

  • Stys PK, Zamponi GW, van Minnen J, Geurts JJ. Will the real multiple sclerosis please stand up? Nat Rev Neurosci. 2012;13(7):507–14.

    Article  CAS  PubMed  Google Scholar 

  • t Hart BA, van Meurs M, et al. A new primate model for multiple sclerosis in the common marmoset. Immunol Today. 2000;21(6):290–7.

    Article  CAS  Google Scholar 

  • Teunissen CE, Khalil M. Neurofilaments as biomarkers in multiple sclerosis. Mult Scler. 2012;18(5):552–6.

    Article  CAS  PubMed  Google Scholar 

  • Villar LM, Picon C, et al. Cerebrospinal fluid immunological biomarkers associated with axonal damage in multiple sclerosis. Eur J Neurol. 2015;22:1169–75.

    Article  CAS  PubMed  Google Scholar 

  • Vogt MH, Teunissen CE, et al. Cerebrospinal fluid anti-myelin antibodies are related to magnetic resonance measures of disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2009;80(10):1110–5.

    Article  CAS  PubMed  Google Scholar 

  • Waschbisch A, Atiya M, et al. Glatiramer acetate treatment normalizes deregulated microRNA expression in relapsing remitting multiple sclerosis. PLoS One. 2011;6(9):e24604.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Costelloe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Costelloe, L., Fletcher, J., Fitzgerald, D. (2016). Neuroinflammatory Disorders. In: Hardiman, O., Doherty, C., Elamin, M., Bede, P. (eds) Neurodegenerative Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-23309-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23309-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23308-6

  • Online ISBN: 978-3-319-23309-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics