Self-Oscillations in Dynamic Systems pp 53-64 | Cite as
Self-Oscillation via Locus of a Perturbed Relay System Design (LPRS)
- 597 Downloads
Abstract
The Poincaré map considered above is a precise tool to find gains of the TRC . The drawback of this approach is in its complexity, which entails extensive computations. This chapter presents an alternative approach—based on the LPRS method, which in the solution of the analysis problem provides exact values of the parameters of self-excited oscillations and a precise solution of the input–output problem, when the plant is linear. Application of this method involved the use of specific computation formulas available within the LPRS method. Unlike other publications on the LPRS method that were focused on analysis, this chapter provides LPRS-based design of self-excited periodic motions. The experiments with inertia wheel pendulum are presented below to illustrate the results of this design.
Keywords
Inertia Wheel Pendulum Input Output Problem Self-excited Oscillations Specific Calculation Formula Relay Feedback SystemReferences
- 1.Aguilar, L., Boiko, I., Fridman, L., Iriarte, R.: Generating self-excited oscillations via two-relay controller. IEEE Trans. Autom. Control 54(2), 416–420 (2009)MathSciNetCrossRefGoogle Scholar
- 2.Albea, C., Canudas de Wit, C., Gordillo, F.: Adaptive control of the boost DC-AC converter. In: Proceedings of the IEEE International Conference on Control Applications, pp. 611–616. Singapore (2007)Google Scholar
- 3.Albea, C., Gordillo, F., Canudas de Wit, C.: Adaptive control design for a boost inverter. Control Eng. Pract. 19, 32–44 (2011)Google Scholar
- 4.Appleton, E.: Automatic synchronization of triode oscillators. Proc. Camb. Philos. Soc. 21(3), 231 (1923)Google Scholar
- 5.Arimoto, S.: Control Theory of Non-linear Mechanical Systems: A Passivity-Based and Circuit-Theoretic Approach. Oxford Engineering Science Series. Oxford University Press, Oxford (1996)zbMATHGoogle Scholar
- 6.Astashev, V.K., Korendyasev, G.K.: Thermomechanical model of cutter selfoscillation in perpendicular free cutting. J. Mach. Manuf. Reliab. 41(6), 3–10 (2012)CrossRefGoogle Scholar
- 7.Åström, K., Block, D., Spong, M.: The Reaction Wheel Pendulum. Lecture Notes for the Reaction Wheel Pendulum (Part of the Mechatronics Control Kit). Morgan & Claypool Publisher, San Rafael (2001)Google Scholar
- 8.Atherton, D.: Nonlinear Control Engineering–Describing Function Analysis and Design. Van Nostrand, Wokingham (1975)Google Scholar
- 9.Bejarano, F., Fridman, L.: High order sliding mode observer for linear systems with unbounded unknown inputs. Int. J. Robust Nonlinear Control 9, 1920–1929 (2010)MathSciNetGoogle Scholar
- 10.Berkemeier, M., Fearing, R.: Tracking fast inverted trajectories of the underactuated acrobot. IEEE Trans. Robot. Autom. 15(4), 740–750 (1999)CrossRefGoogle Scholar
- 11.Best, R.: Phase-Locked Loops: Design, Simulation, and Application, 4th edn. McGraw-Hill, New York (1999)Google Scholar
- 12.Block, D., Astrom, K., Spong, M.: The Reaction Wheel Pendulum. Synthesis Lectures on Control and Mechatronics #1. Morgan & Claypool Publisher, San Rafael (2007)Google Scholar
- 13.Boiko, I.: Oscillations and transfer properties of relay servo systems – the locus of a perturbed relay system approach. Automatica 41, 677–683 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
- 14.Boiko, I.: Discontinuous Control Systems: Frequency-Domain Analysis and Design. Birkhäuser, Boston (2009)Google Scholar
- 15.Boiko, I., Fridman, L.: Analysis of chattering in continuous sliding-mode controllers. IEEE Trans. Autom. Control 50(9), 1442–1446 (2005)MathSciNetCrossRefGoogle Scholar
- 16.Boiko, I., Fridman, L.: Frequency domain analysis of second order sliding modes. In: Advances in Variable Structure and Sliding Mode Control, pp. 125–142. Springer, Berlin (2006)Google Scholar
- 17.Boiko, I., Fridman, L., Castellanos, M.: Analysis of second-order sliding-mode algorithms in the frequency domain. IEEE Trans. Autom. Control 49(4), 946–950 (2004)MathSciNetCrossRefGoogle Scholar
- 18.Boiko, I., Fridman, L., Pisano, A., Usai, E.: Analysis of chattering in systems with second-order sliding modes. IEEE Trans. Autom. Control 52(11), 2085–2102 (2007)MathSciNetCrossRefGoogle Scholar
- 19.Cáceres, R., Barbi, I.: A boost DC–AC converter: analysis, design, and experimentation. IEEE Trans. Power Electron. 14(1), 134–141 (1999)CrossRefGoogle Scholar
- 20.Canudas de Wit, C., Espiau, B., Urrea, C.: Orbital stabilization of underactuated mechanical systems. In: Proceedings of the 15th IFAC World Congress. Barcelona (2002)Google Scholar
- 21.Cardon, S., Iberall, A.: Oscillations in biological systems. Biosystems 3(3), 237–249 (1970)CrossRefGoogle Scholar
- 22.Chen, F., Liang, T., Lin, R., Chen, J.: A novel self-oscillating, boos-derived DC–DC converter with load regulation. IEEE Trans. Power Electron. 20(1), 65–74 (2005)CrossRefGoogle Scholar
- 23.Chevallereau, C., Abba, G., Aoustin, Y., Plestan, E., Canudas-de-Wit, C., Grizzle, J.: Rabbit: a testbed for advanced control theory. IEEE Control. Syst. Mag. 23(5), 57–79 (2003)CrossRefGoogle Scholar
- 24.Choukchou-Braham, A., Cherki, B., Djemaï, M., Busawon, K.: Analysis and Control of Underactuated Mechanical Systems. Springer, Cham (2014)zbMATHCrossRefGoogle Scholar
- 25.Craig, J.: Introduction to Robotics: Mechanics and Control. Addison-Wesley Publishing, Massachusetts (1989)zbMATHGoogle Scholar
- 26.di Bernardo, M., Budd, C., Champneys, A., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Applied Mathematical Sciences, vol. 163. Springer, London (2008)Google Scholar
- 27.Epstein, I.R.: Nonlinear oscillations in chemical and biological systems. Physica D: Nonlinear Phenomena 51(1–3), 152–160 (1991)zbMATHCrossRefGoogle Scholar
- 28.Estrada, A., Fridman, L.: Exact compensation of unmatched perturbation via quasi-continuous HOSM. In: 47th IEEE Conference on Decision and Control, pp. 2202–2207. Cancún (2008)Google Scholar
- 29.Estrada, A., Fridman, L.: Quasi-continuous HOSM control for systems with unmatched perturbations. Automatica 46(11), 1916–1919 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
- 30.Fantoni, I., Lozano, R.: Nonlinear Control for Underactuated Mechanical Systems. Springer, London (2001)Google Scholar
- 31.Fendrich, O.: Describing functions in limit cycles. IEEE Trans. Autom. Control 37(4), 486–488 (1992)MathSciNetCrossRefGoogle Scholar
- 32.Ferreira, A., Bejarano, F.J., Fridman, L.: Robust control with exact uncertainties compensation: with or without chattering? IEEE Trans. Control Syst. Technol. 19(5), 969–975 (2011)CrossRefGoogle Scholar
- 33.Ferreira, A., Rios, H., Rosales, A.: Robust regulation for a 3-DOF helicopter via sliding-mode observation and identification. J. Frankl. Inst. 349(2), 700–718 (2012)zbMATHCrossRefGoogle Scholar
- 34.Filippov, A.: Differential Equations with Discontinuous Right-Hand Sides. Kluwer Academic Publisher, Dordrecht (1988)zbMATHCrossRefGoogle Scholar
- 35.Fradkov, A., Pogromsky, A.: Introduction to Control of Oscillations and Chaos. Series on Nonlinear Science, vol. 35. World Scientific, Singapore (1998)Google Scholar
- 36.Fridman, L.: An averaging approach to chattering. IEEE Trans. Autom. Control 46(8), 1260–1265 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
- 37.Fridman, L.: Slow periodic motion in variable structure systems. Int. J. Syst. Sci. 33(14), 1145–1155 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
- 38.Fridman, L.: Slow periodic motions with internal sliding modes in the singularly perturbed relay systems. Int. J. Control. 75(7), 524–537 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
- 39.Gelb, A., Velde, W.V.: Multiple-Input Describing Functions and Nonlinear Systems Design. McGraw-Hill, New York (1968)Google Scholar
- 40.Grizzle, J., Abba, G., Plestan, F.: Asymptotically stable walking for biped robots: analysis via systems with impulsive effects. IEEE Trans. Autom. Control 48(1), 51–64 (2001)MathSciNetCrossRefGoogle Scholar
- 41.Grizzle, J., Moog, C., Chevallereau, C.: Nonlinear control of mechanical systems with an unactuated cyclic variable. IEEE Trans. Autom. Control 50(5), 559–576 (2005)MathSciNetCrossRefGoogle Scholar
- 42.Hamel, B.: Contribution a l’etude mathematique des systemes de reglage par tout-ou-rien, C.E.M.V. Service Technique Aeronautique 17 (1949)Google Scholar
- 43.Hara, Y., Jahan, R.A.: Activation energy of aggregation-disaggregation self-oscillation of polymer chain. Int. J. Mol. Sci. 13, 16281–16290 (2012)CrossRefGoogle Scholar
- 44.Hsu, J., Meyer, A.: Modern Control Principles and Applications. McGraw Hill, New York (1968)zbMATHGoogle Scholar
- 45.Hurmuzlu, Y., Génot, F., Brogliato, B.: Modeling, stability and control of biped robots—a general framework. Automatica 40, 1647–1664 (2004)zbMATHCrossRefGoogle Scholar
- 46.Isidori, A.: Nonlinear Control Systems: An Introduction. Springer, Berlin (1989)CrossRefGoogle Scholar
- 47.Isidori, A.: Nonlinear Control Systems, 3rd edn. Springer, London (1995)zbMATHCrossRefGoogle Scholar
- 48.Kelly, R., Llamas, J., Campa, R.: A measurement procedure for viscous and coulomb friction. IEEE Trans. Instrum. Meas. 49(4), 857–861 (2000)CrossRefGoogle Scholar
- 49.Khalil, H.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)zbMATHGoogle Scholar
- 50.Koenig, D.R., Weig, E.M.: Voltage-sustained self-oscillation of a nano-mechanical electron shuttle. Appl. Phys. Lett. 101(213111), 1–5 (2012)Google Scholar
- 51.Lai, J.: Power conditioning circuit topologies: power conversion from low-voltage dc to high-voltage ac for single-phase grid-tie applications. IEEE Ind. Electron. Mag. 3(2), 24–34 (2009)CrossRefGoogle Scholar
- 52.Lee, H., Kim, Y., Jeon, H.: On the linearization via restricted class of dynamic feedback. IEEE Trans. Autom. Control 45(7), 1385–1391 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
- 53.Levant, A.: High-order sliding modes: differentiation and output feedback control. Int. J. Control 76(11), 924–941 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
- 54.Levant, A.: High-order sliding mode controllers. IEEE Trans. Autom. Control 50(11), 1812–1816 (2005)MathSciNetCrossRefGoogle Scholar
- 55.Levant, A.: Chattering analysis. IEEE Trans. Autom. Control 55(6), 1380–1389 (2010)MathSciNetCrossRefGoogle Scholar
- 56.Lin, A.T., Lin, C.: Peniotron forward wave self-oscillations. Appl. Phys. Lett. 64(9), 1088–1090 (1994)CrossRefGoogle Scholar
- 57.Loeb, J.: Frequency response. In: Advances in Nonlinear Servo Theory, pp. 260–268. The Macmillan Company, New York (1956)Google Scholar
- 58.Mancini, R.: Op Amps For Everyone: Design Reference. Texas Instruments, Dallas (2002)Google Scholar
- 59.Martínez-Salamero, L., Valderrama-Blavi, H., Giral, R., Alonso, C., Estibals, B., Cid-Pastor, A.: Self-oscillating DC-to-DC switching converters with transformer characteristics. IEEE Trans. Aerosp. Electron. Syst. 41(2), 710–716 (2005)CrossRefGoogle Scholar
- 60.Melkikh, A.V., Dolgirev, Y.E.: Self-oscillations in oscillating heat pipes. High Temp. 44(4), 542–547 (2006)CrossRefGoogle Scholar
- 61.Meza, M., Aguilar, L., Shiriaev, A., Freidovich, L., Orlov, Y.: Periodic motion planning and nonlinear H ∞ tracking control of a 3-DOF underactuated helicopter. Int. J. Syst. Sci. 42(5), 829–838 (2011)zbMATHCrossRefGoogle Scholar
- 62.Molinari, B.P.: A strong controllability and observability in linear multivariable control. IEEE Trans. Autom. Control 21, 761–764 (1976)zbMATHMathSciNetCrossRefGoogle Scholar
- 63.Morris, K., Rebarber, R.: Invariant zeros of siso infinite-dimensional systems. Int. J. Control 83(12), 2573–2579 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
- 64.Neǐmark, Y.: The Method of Point Transformations in the Theory of Nonlinear Oscillations. Nauka, Moscow (1972)Google Scholar
- 65.Oh, S., Pathak, K., Agrawal, S., Pota, H., Garratt, M.: Approaches for a tether-guided landing of an autonomous helicopter. IEEE Trans. Robot. 22(3), 536–544 (2006)CrossRefGoogle Scholar
- 66.Olivier, J.C., Le Claire, J.C., Loron, L.: An efficient switching frequency limitation process applied to high dynamic voltage supply. IEEE Trans. Power Electron. 23(1), 153–162 (2008)CrossRefGoogle Scholar
- 67.Orlov, Y.: Discontinuous Systems: Lyapunov Analysis and Robust Synthesis Under Uncertain Conditions. Springer, London (2009)Google Scholar
- 68.Orlov, Y., Riachy, S., Floquet, T., Richard, J.: Stabilization of the cart-pendulum system via quasi-homogeneous switched control. In: Proceedings of the 2006 International Workshop on Variable Structure Systems, pp. 139–142. Alghero (2006)Google Scholar
- 69.Orlov, Y., Aguilar, L., Acho, L., Ortiz, A.: Asymptotic harmonic generator and its application to finite time orbital stabilization of a friction pendulum with experimental verification. Int. J. Control 81(2), 227–234 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
- 70.Plestan, F., Grizzle, J., Westervelt, E., Abba, G.: Stable walking of a 7-DOF biped robot. IEEE Trans. Robot. Autom. 19(4), 653–668 (2003)CrossRefGoogle Scholar
- 71.Quanser: 3D helicopter system with active disturbance. Techical report (2004)Google Scholar
- 72.Rabinovich, M.I.: Self-oscillations of distributed systems. Radiophys. Quantum Electron. 17(4), 361–385 (1974)CrossRefGoogle Scholar
- 73.Raptis, I., Valavanis, K., Vachtsevanos, G.: Linear tracking control for small-scale unmanned helicopters. IEEE Trans. Control Syst. Technol. 20(4), 995–1009 (2012)CrossRefGoogle Scholar
- 74.Robinett, III, R., Wilson, D.: What is a limit cycle? Int. J. Control 81(12), 1886–1900 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
- 75.Romanov, Y.A., Romanova, Y.Y.: Self-oscillations in semiconductor superlattices. J. Exp. Theor. Phys. 91(5), 1033–1045 (2000)CrossRefGoogle Scholar
- 76.Sanchis, P., Ursua, A., Gubia, E., Marroyo, L.: Buck-boost DC-AC inverter for a new control strategy. In: 35th Annual IEEE Power Electronics Specialist Conference, pp. 3994–3998. Aachen (2004)Google Scholar
- 77.Sanchis, P., Ursæa, A., Gubia, E., Marroyo, L.: boost DC–AC inverter: a new control strategy. IEEE Trans. Power Electron. 20(2), 343–353 (2005)Google Scholar
- 78.Santiesteban, R., Floquet, T., Orlov, Y., Riachy, S., Richard, J.: Second order sliding mode control for underactuated mechanical system II: orbital stabilization of an inverted pendulum with application to swing up/balancing control. Int. J. Robust Nonlinear Control 18(4–5), 544–556 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
- 79.Sastry, S.: Nonlinear Systems: Analysis, Stability, and Control. Springer, New York (1999)zbMATHCrossRefGoogle Scholar
- 80.Shiriaev, A., Perram, J., Canudas-de-Wit, C.: Constructive tool for orbital stabilization of underactuated nonlinear systems: virtual constraint approach. IEEE Trans. Autom. Control 50(8), 1164–1176 (2005)MathSciNetCrossRefGoogle Scholar
- 81.Shiriaev, A., Freidovich, L., Robertsson, A., Sandberg, A.: Virtual-holonomic-constraints-based design stable oscillations of furuta pendulum: theory and experiments. IEEE Trans. Robot. 23(4), 827–832 (2007)CrossRefGoogle Scholar
- 82.Shiriaev, A., Freidovich, L., Manchester, I.: Can we make a robot ballerina perform a pirouette? orbital stabilization of periodic motions of underactuated mechanical systems. Annu. Rev. Control. 32(2), 200–211 (2008)CrossRefGoogle Scholar
- 83.Shiriaev, A., Freidovich, L., Gusev, S.: Transverse linearization for controlled mechanical systems with several passive degrees of freedom. IEEE Trans. Autom. Control 55(4), 893–906 (2010)MathSciNetCrossRefGoogle Scholar
- 84.Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation. Birkhäuser, Boston (2013)Google Scholar
- 85.Spong, M., Vidyasagar, M.: Robot Dynamics and Control. Wiley, New York (1989)Google Scholar
- 86.Trentelman, H., Stoorvogel, A., Hautus, M.: Control Theory for Linear Systems. Springer, London (2001)zbMATHCrossRefGoogle Scholar
- 87.Tsypkin, Y.: Relay Control Systems. Cambridge University Press, Cambridge (1984)zbMATHGoogle Scholar
- 88.Utkin, V.: Sliding Modes in Control Optimization. Springer, Berlin (1992)zbMATHCrossRefGoogle Scholar
- 89.Utkin, V., Guldner, J., Shi, J.: Sliding Mode Control in Electromechanical Systems. CRC Press, Boca Raton (1999)Google Scholar
- 90.Varigonda, S., Georgiou, T.: Dynamics of relay relaxation oscillators. IEEE Trans. Autom. Control 46(1), 65–77 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
- 91.Weldon, J., Alemán, B., Sussman, A., Gannett, W., Zettl, A.: Sustained mechanical self-oscillations in carbon nanotubes. Nano Lett. 10, 1728–1733 (2010)CrossRefGoogle Scholar
- 92.Westerberg, S., Mettin, U., Shiriaev, A., Freidovich, L., Orlov, Y.: Motion planning and control of a simplified helicopter model based on virtual holonomic constraints. In: Proceedings of the 14th International Conference on Advanced Robotics, pp. 1–6. Munich (2009)Google Scholar
- 93.Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Text in Applied Mathematics, 2nd edn. Springer, New York (2000)Google Scholar
- 94.Youssef, M., Jain, P.: A novel single stage AC–DC self-oscillating series-parallel resonant converter. IEEE Trans. Power Electron. 21(6), 1735–1744 (2006)CrossRefGoogle Scholar
- 95.Zheng, B., Zhong, Y.: Robust attitude regulation of a 3-DOF helicopter benchmark: theory and experiments. IEEE Trans. Ind. Electron. 58(2), 660–670 (2011)CrossRefGoogle Scholar