Self-Oscillations in Dynamic Systems pp 121-135 | Cite as
Fixed-Phase Loop (FPL)
- 605 Downloads
Abstract
There exist a number of applications in which oscillations must be produced at a certain phase shift with respect to a reference signal. Phase-lock loop (PLL) is widely used for this purpose. PLL uses a closed-loop control principle for tracking the required phase shift. Another solution, which uses an open-loop control principle for the phase angle, can be realized on the TRC considered in this book. This solution is named here a fixed-phase loop (FPL ). FPL is an oscillator consisting of a TRC and a low-pass (LP) filter that generates a periodic voltage signal of the frequency corresponding to a certain specified phase lag of the LP filter. Regardless of the LP filter connected in a loop with the TRC, oscillations are always produced at the same phase lag value. Two different circuits are considered: without and with an additional integrator. The purpose of the considered self-oscillating circuit is to produce a periodic reference signal at the output of the filter with desired frequency and amplitude. Sufficient conditions for orbital asymptotic stability of the closed-loop system is verified through the Poincaré map. The two FPL circuits are illustrated by simulations and experiments.
Keywords
Periodic Voltage Signal Asymptotic Orbital Stability Required Phase Shift Phase-locked Loop (PLL) Power Factor Correction CircuitReferences
- 1.Aguilar, L., Boiko, I., Fridman, L., Iriarte, R.: Generating self-excited oscillations via two-relay controller. IEEE Trans. Autom. Control 54(2), 416–420 (2009)MathSciNetCrossRefGoogle Scholar
- 2.Albea, C., Canudas de Wit, C., Gordillo, F.: Adaptive control of the boost DC-AC converter. In: Proceedings of the IEEE International Conference on Control Applications, pp. 611–616. Singapore (2007)Google Scholar
- 3.Albea, C., Gordillo, F., Canudas de Wit, C.: Adaptive control design for a boost inverter. Control Eng. Pract. 19, 32–44 (2011)Google Scholar
- 4.Appleton, E.: Automatic synchronization of triode oscillators. Proc. Camb. Philos. Soc. 21(3), 231 (1923)Google Scholar
- 5.Arimoto, S.: Control Theory of Non-linear Mechanical Systems: A Passivity-Based and Circuit-Theoretic Approach. Oxford Engineering Science Series. Oxford University Press, Oxford (1996)zbMATHGoogle Scholar
- 6.Astashev, V.K., Korendyasev, G.K.: Thermomechanical model of cutter selfoscillation in perpendicular free cutting. J. Mach. Manuf. Reliab. 41(6), 3–10 (2012)CrossRefGoogle Scholar
- 7.Åström, K., Block, D., Spong, M.: The Reaction Wheel Pendulum. Lecture Notes for the Reaction Wheel Pendulum (Part of the Mechatronics Control Kit). Morgan & Claypool Publisher, San Rafael (2001)Google Scholar
- 8.Atherton, D.: Nonlinear Control Engineering–Describing Function Analysis and Design. Van Nostrand, Wokingham (1975)Google Scholar
- 9.Bejarano, F., Fridman, L.: High order sliding mode observer for linear systems with unbounded unknown inputs. Int. J. Robust Nonlinear Control 9, 1920–1929 (2010)MathSciNetGoogle Scholar
- 10.Berkemeier, M., Fearing, R.: Tracking fast inverted trajectories of the underactuated acrobot. IEEE Trans. Robot. Autom. 15(4), 740–750 (1999)CrossRefGoogle Scholar
- 11.Best, R.: Phase-Locked Loops: Design, Simulation, and Application, 4th edn. McGraw-Hill, New York (1999)Google Scholar
- 12.Block, D., Astrom, K., Spong, M.: The Reaction Wheel Pendulum. Synthesis Lectures on Control and Mechatronics #1. Morgan & Claypool Publisher, San Rafael (2007)Google Scholar
- 13.Boiko, I.: Oscillations and transfer properties of relay servo systems – the locus of a perturbed relay system approach. Automatica 41, 677–683 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
- 14.Boiko, I.: Discontinuous Control Systems: Frequency-Domain Analysis and Design. Birkhäuser, Boston (2009)Google Scholar
- 15.Boiko, I., Fridman, L.: Analysis of chattering in continuous sliding-mode controllers. IEEE Trans. Autom. Control 50(9), 1442–1446 (2005)MathSciNetCrossRefGoogle Scholar
- 16.Boiko, I., Fridman, L.: Frequency domain analysis of second order sliding modes. In: Advances in Variable Structure and Sliding Mode Control, pp. 125–142. Springer, Berlin (2006)Google Scholar
- 17.Boiko, I., Fridman, L., Castellanos, M.: Analysis of second-order sliding-mode algorithms in the frequency domain. IEEE Trans. Autom. Control 49(4), 946–950 (2004)MathSciNetCrossRefGoogle Scholar
- 18.Boiko, I., Fridman, L., Pisano, A., Usai, E.: Analysis of chattering in systems with second-order sliding modes. IEEE Trans. Autom. Control 52(11), 2085–2102 (2007)MathSciNetCrossRefGoogle Scholar
- 19.Cáceres, R., Barbi, I.: A boost DC–AC converter: analysis, design, and experimentation. IEEE Trans. Power Electron. 14(1), 134–141 (1999)CrossRefGoogle Scholar
- 20.Canudas de Wit, C., Espiau, B., Urrea, C.: Orbital stabilization of underactuated mechanical systems. In: Proceedings of the 15th IFAC World Congress. Barcelona (2002)Google Scholar
- 21.Cardon, S., Iberall, A.: Oscillations in biological systems. Biosystems 3(3), 237–249 (1970)CrossRefGoogle Scholar
- 22.Chen, F., Liang, T., Lin, R., Chen, J.: A novel self-oscillating, boos-derived DC–DC converter with load regulation. IEEE Trans. Power Electron. 20(1), 65–74 (2005)CrossRefGoogle Scholar
- 23.Chevallereau, C., Abba, G., Aoustin, Y., Plestan, E., Canudas-de-Wit, C., Grizzle, J.: Rabbit: a testbed for advanced control theory. IEEE Control. Syst. Mag. 23(5), 57–79 (2003)CrossRefGoogle Scholar
- 24.Choukchou-Braham, A., Cherki, B., Djemaï, M., Busawon, K.: Analysis and Control of Underactuated Mechanical Systems. Springer, Cham (2014)zbMATHCrossRefGoogle Scholar
- 25.Craig, J.: Introduction to Robotics: Mechanics and Control. Addison-Wesley Publishing, Massachusetts (1989)zbMATHGoogle Scholar
- 26.di Bernardo, M., Budd, C., Champneys, A., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Applied Mathematical Sciences, vol. 163. Springer, London (2008)Google Scholar
- 27.Epstein, I.R.: Nonlinear oscillations in chemical and biological systems. Physica D: Nonlinear Phenomena 51(1–3), 152–160 (1991)zbMATHCrossRefGoogle Scholar
- 28.Estrada, A., Fridman, L.: Exact compensation of unmatched perturbation via quasi-continuous HOSM. In: 47th IEEE Conference on Decision and Control, pp. 2202–2207. Cancún (2008)Google Scholar
- 29.Estrada, A., Fridman, L.: Quasi-continuous HOSM control for systems with unmatched perturbations. Automatica 46(11), 1916–1919 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
- 30.Fantoni, I., Lozano, R.: Nonlinear Control for Underactuated Mechanical Systems. Springer, London (2001)Google Scholar
- 31.Fendrich, O.: Describing functions in limit cycles. IEEE Trans. Autom. Control 37(4), 486–488 (1992)MathSciNetCrossRefGoogle Scholar
- 32.Ferreira, A., Bejarano, F.J., Fridman, L.: Robust control with exact uncertainties compensation: with or without chattering? IEEE Trans. Control Syst. Technol. 19(5), 969–975 (2011)CrossRefGoogle Scholar
- 33.Ferreira, A., Rios, H., Rosales, A.: Robust regulation for a 3-DOF helicopter via sliding-mode observation and identification. J. Frankl. Inst. 349(2), 700–718 (2012)zbMATHCrossRefGoogle Scholar
- 34.Filippov, A.: Differential Equations with Discontinuous Right-Hand Sides. Kluwer Academic Publisher, Dordrecht (1988)zbMATHCrossRefGoogle Scholar
- 35.Fradkov, A., Pogromsky, A.: Introduction to Control of Oscillations and Chaos. Series on Nonlinear Science, vol. 35. World Scientific, Singapore (1998)Google Scholar
- 36.Fridman, L.: An averaging approach to chattering. IEEE Trans. Autom. Control 46(8), 1260–1265 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
- 37.Fridman, L.: Slow periodic motion in variable structure systems. Int. J. Syst. Sci. 33(14), 1145–1155 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
- 38.Fridman, L.: Slow periodic motions with internal sliding modes in the singularly perturbed relay systems. Int. J. Control. 75(7), 524–537 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
- 39.Gelb, A., Velde, W.V.: Multiple-Input Describing Functions and Nonlinear Systems Design. McGraw-Hill, New York (1968)Google Scholar
- 40.Grizzle, J., Abba, G., Plestan, F.: Asymptotically stable walking for biped robots: analysis via systems with impulsive effects. IEEE Trans. Autom. Control 48(1), 51–64 (2001)MathSciNetCrossRefGoogle Scholar
- 41.Grizzle, J., Moog, C., Chevallereau, C.: Nonlinear control of mechanical systems with an unactuated cyclic variable. IEEE Trans. Autom. Control 50(5), 559–576 (2005)MathSciNetCrossRefGoogle Scholar
- 42.Hamel, B.: Contribution a l’etude mathematique des systemes de reglage par tout-ou-rien, C.E.M.V. Service Technique Aeronautique 17 (1949)Google Scholar
- 43.Hara, Y., Jahan, R.A.: Activation energy of aggregation-disaggregation self-oscillation of polymer chain. Int. J. Mol. Sci. 13, 16281–16290 (2012)CrossRefGoogle Scholar
- 44.Hsu, J., Meyer, A.: Modern Control Principles and Applications. McGraw Hill, New York (1968)zbMATHGoogle Scholar
- 45.Hurmuzlu, Y., Génot, F., Brogliato, B.: Modeling, stability and control of biped robots—a general framework. Automatica 40, 1647–1664 (2004)zbMATHCrossRefGoogle Scholar
- 46.Isidori, A.: Nonlinear Control Systems: An Introduction. Springer, Berlin (1989)CrossRefGoogle Scholar
- 47.Isidori, A.: Nonlinear Control Systems, 3rd edn. Springer, London (1995)zbMATHCrossRefGoogle Scholar
- 48.Kelly, R., Llamas, J., Campa, R.: A measurement procedure for viscous and coulomb friction. IEEE Trans. Instrum. Meas. 49(4), 857–861 (2000)CrossRefGoogle Scholar
- 49.Khalil, H.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)zbMATHGoogle Scholar
- 50.Koenig, D.R., Weig, E.M.: Voltage-sustained self-oscillation of a nano-mechanical electron shuttle. Appl. Phys. Lett. 101(213111), 1–5 (2012)Google Scholar
- 51.Lai, J.: Power conditioning circuit topologies: power conversion from low-voltage dc to high-voltage ac for single-phase grid-tie applications. IEEE Ind. Electron. Mag. 3(2), 24–34 (2009)CrossRefGoogle Scholar
- 52.Lee, H., Kim, Y., Jeon, H.: On the linearization via restricted class of dynamic feedback. IEEE Trans. Autom. Control 45(7), 1385–1391 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
- 53.Levant, A.: High-order sliding modes: differentiation and output feedback control. Int. J. Control 76(11), 924–941 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
- 54.Levant, A.: High-order sliding mode controllers. IEEE Trans. Autom. Control 50(11), 1812–1816 (2005)MathSciNetCrossRefGoogle Scholar
- 55.Levant, A.: Chattering analysis. IEEE Trans. Autom. Control 55(6), 1380–1389 (2010)MathSciNetCrossRefGoogle Scholar
- 56.Lin, A.T., Lin, C.: Peniotron forward wave self-oscillations. Appl. Phys. Lett. 64(9), 1088–1090 (1994)CrossRefGoogle Scholar
- 57.Loeb, J.: Frequency response. In: Advances in Nonlinear Servo Theory, pp. 260–268. The Macmillan Company, New York (1956)Google Scholar
- 58.Mancini, R.: Op Amps For Everyone: Design Reference. Texas Instruments, Dallas (2002)Google Scholar
- 59.Martínez-Salamero, L., Valderrama-Blavi, H., Giral, R., Alonso, C., Estibals, B., Cid-Pastor, A.: Self-oscillating DC-to-DC switching converters with transformer characteristics. IEEE Trans. Aerosp. Electron. Syst. 41(2), 710–716 (2005)CrossRefGoogle Scholar
- 60.Melkikh, A.V., Dolgirev, Y.E.: Self-oscillations in oscillating heat pipes. High Temp. 44(4), 542–547 (2006)CrossRefGoogle Scholar
- 61.Meza, M., Aguilar, L., Shiriaev, A., Freidovich, L., Orlov, Y.: Periodic motion planning and nonlinear H ∞ tracking control of a 3-DOF underactuated helicopter. Int. J. Syst. Sci. 42(5), 829–838 (2011)zbMATHCrossRefGoogle Scholar
- 62.Molinari, B.P.: A strong controllability and observability in linear multivariable control. IEEE Trans. Autom. Control 21, 761–764 (1976)zbMATHMathSciNetCrossRefGoogle Scholar
- 63.Morris, K., Rebarber, R.: Invariant zeros of siso infinite-dimensional systems. Int. J. Control 83(12), 2573–2579 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
- 64.Neǐmark, Y.: The Method of Point Transformations in the Theory of Nonlinear Oscillations. Nauka, Moscow (1972)Google Scholar
- 65.Oh, S., Pathak, K., Agrawal, S., Pota, H., Garratt, M.: Approaches for a tether-guided landing of an autonomous helicopter. IEEE Trans. Robot. 22(3), 536–544 (2006)CrossRefGoogle Scholar
- 66.Olivier, J.C., Le Claire, J.C., Loron, L.: An efficient switching frequency limitation process applied to high dynamic voltage supply. IEEE Trans. Power Electron. 23(1), 153–162 (2008)CrossRefGoogle Scholar
- 67.Orlov, Y.: Discontinuous Systems: Lyapunov Analysis and Robust Synthesis Under Uncertain Conditions. Springer, London (2009)Google Scholar
- 68.Orlov, Y., Riachy, S., Floquet, T., Richard, J.: Stabilization of the cart-pendulum system via quasi-homogeneous switched control. In: Proceedings of the 2006 International Workshop on Variable Structure Systems, pp. 139–142. Alghero (2006)Google Scholar
- 69.Orlov, Y., Aguilar, L., Acho, L., Ortiz, A.: Asymptotic harmonic generator and its application to finite time orbital stabilization of a friction pendulum with experimental verification. Int. J. Control 81(2), 227–234 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
- 70.Plestan, F., Grizzle, J., Westervelt, E., Abba, G.: Stable walking of a 7-DOF biped robot. IEEE Trans. Robot. Autom. 19(4), 653–668 (2003)CrossRefGoogle Scholar
- 71.Quanser: 3D helicopter system with active disturbance. Techical report (2004)Google Scholar
- 72.Rabinovich, M.I.: Self-oscillations of distributed systems. Radiophys. Quantum Electron. 17(4), 361–385 (1974)CrossRefGoogle Scholar
- 73.Raptis, I., Valavanis, K., Vachtsevanos, G.: Linear tracking control for small-scale unmanned helicopters. IEEE Trans. Control Syst. Technol. 20(4), 995–1009 (2012)CrossRefGoogle Scholar
- 74.Robinett, III, R., Wilson, D.: What is a limit cycle? Int. J. Control 81(12), 1886–1900 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
- 75.Romanov, Y.A., Romanova, Y.Y.: Self-oscillations in semiconductor superlattices. J. Exp. Theor. Phys. 91(5), 1033–1045 (2000)CrossRefGoogle Scholar
- 76.Sanchis, P., Ursua, A., Gubia, E., Marroyo, L.: Buck-boost DC-AC inverter for a new control strategy. In: 35th Annual IEEE Power Electronics Specialist Conference, pp. 3994–3998. Aachen (2004)Google Scholar
- 77.Sanchis, P., Ursæa, A., Gubia, E., Marroyo, L.: boost DC–AC inverter: a new control strategy. IEEE Trans. Power Electron. 20(2), 343–353 (2005)Google Scholar
- 78.Santiesteban, R., Floquet, T., Orlov, Y., Riachy, S., Richard, J.: Second order sliding mode control for underactuated mechanical system II: orbital stabilization of an inverted pendulum with application to swing up/balancing control. Int. J. Robust Nonlinear Control 18(4–5), 544–556 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
- 79.Sastry, S.: Nonlinear Systems: Analysis, Stability, and Control. Springer, New York (1999)zbMATHCrossRefGoogle Scholar
- 80.Shiriaev, A., Perram, J., Canudas-de-Wit, C.: Constructive tool for orbital stabilization of underactuated nonlinear systems: virtual constraint approach. IEEE Trans. Autom. Control 50(8), 1164–1176 (2005)MathSciNetCrossRefGoogle Scholar
- 81.Shiriaev, A., Freidovich, L., Robertsson, A., Sandberg, A.: Virtual-holonomic-constraints-based design stable oscillations of furuta pendulum: theory and experiments. IEEE Trans. Robot. 23(4), 827–832 (2007)CrossRefGoogle Scholar
- 82.Shiriaev, A., Freidovich, L., Manchester, I.: Can we make a robot ballerina perform a pirouette? orbital stabilization of periodic motions of underactuated mechanical systems. Annu. Rev. Control. 32(2), 200–211 (2008)CrossRefGoogle Scholar
- 83.Shiriaev, A., Freidovich, L., Gusev, S.: Transverse linearization for controlled mechanical systems with several passive degrees of freedom. IEEE Trans. Autom. Control 55(4), 893–906 (2010)MathSciNetCrossRefGoogle Scholar
- 84.Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation. Birkhäuser, Boston (2013)Google Scholar
- 85.Spong, M., Vidyasagar, M.: Robot Dynamics and Control. Wiley, New York (1989)Google Scholar
- 86.Trentelman, H., Stoorvogel, A., Hautus, M.: Control Theory for Linear Systems. Springer, London (2001)zbMATHCrossRefGoogle Scholar
- 87.Tsypkin, Y.: Relay Control Systems. Cambridge University Press, Cambridge (1984)zbMATHGoogle Scholar
- 88.Utkin, V.: Sliding Modes in Control Optimization. Springer, Berlin (1992)zbMATHCrossRefGoogle Scholar
- 89.Utkin, V., Guldner, J., Shi, J.: Sliding Mode Control in Electromechanical Systems. CRC Press, Boca Raton (1999)Google Scholar
- 90.Varigonda, S., Georgiou, T.: Dynamics of relay relaxation oscillators. IEEE Trans. Autom. Control 46(1), 65–77 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
- 91.Weldon, J., Alemán, B., Sussman, A., Gannett, W., Zettl, A.: Sustained mechanical self-oscillations in carbon nanotubes. Nano Lett. 10, 1728–1733 (2010)CrossRefGoogle Scholar
- 92.Westerberg, S., Mettin, U., Shiriaev, A., Freidovich, L., Orlov, Y.: Motion planning and control of a simplified helicopter model based on virtual holonomic constraints. In: Proceedings of the 14th International Conference on Advanced Robotics, pp. 1–6. Munich (2009)Google Scholar
- 93.Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Text in Applied Mathematics, 2nd edn. Springer, New York (2000)Google Scholar
- 94.Youssef, M., Jain, P.: A novel single stage AC–DC self-oscillating series-parallel resonant converter. IEEE Trans. Power Electron. 21(6), 1735–1744 (2006)CrossRefGoogle Scholar
- 95.Zheng, B., Zhong, Y.: Robust attitude regulation of a 3-DOF helicopter benchmark: theory and experiments. IEEE Trans. Ind. Electron. 58(2), 660–670 (2011)CrossRefGoogle Scholar