Skip to main content

The Brain as a Therapeutic Target in TMD and Orofacial Pain: The Next Frontier in Personalized Pain Medicine and Health Technology

  • Chapter
  • First Online:
Personalized Oral Health Care

Abstract

There is growing evidence that the cause for the chronicity in many TMD and orofacial pain patients may lie in the brain, instead of the peripheral areas where the symptoms reside. Accumulating data, stemming primarily from the area of neuroimaging, show that the transition from acute to chronic pain appears to be due to an alteration of specific neural systems as a maladaptation to the prolonged suffering, a phenomenon called neuroplasticity. As described by William James, a pioneering American psychologist, in his book The Principles of Psychology (1890): “Plasticity […] means the possession of a structure weak enough to yield to an influence, but strong enough not to yield all at once.” He attributed this inherent ability of adaptive changes to any organic matter, especially the nervous system, granting it a special degree of plasticity. Based on this principle, prolonged pain may induce ingrained alterations in the brain, which could explain the resilience of TMD and orofacial pain to conventional treatments in countless patients.

This chapter will describe new technologies that represent a change of paradigm in personalized treatment of pain patients: They objectively evaluate and modulate in vivo neuromechanisms in the brain depending on the patient’s symptoms, even in the clinical environment, reaching far beyond the traditional clinical translational models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LeResche L. Epidemiology of temporomandibular disorders: implications for the investigation of etiologic factors. Crit Rev Oral Biol Med. 1997;8:291–305.

    Article  PubMed  Google Scholar 

  2. Lipton JA, Ship JA, Larach-Robinson D. Estimated prevalence and distribution of reported orofacial pain in the United States. J Am Dent Assoc. 1993;124:115–21.

    Article  PubMed  Google Scholar 

  3. Salonen L, Hellden L, Carlsson GE. Prevalence of signs and symptoms of dysfunction in the masticatory system: an epidemiologic study in an adult Swedish population. J Craniomandib Disord. 1990;4:241–50.

    PubMed  Google Scholar 

  4. DaSilva AF, Shaefer J, Keith DA. The temporomandibular joint: clinical and surgical aspects. Neuroimaging Clin N Am. 2003;13:573–82.

    Article  PubMed  Google Scholar 

  5. DaSilva AF, Acquadro MA. Orofacial pain. In: Ballantyne JC, editor. The Massachusetts General Hospital handbook of pain management. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2005.

    Google Scholar 

  6. Okeson J. Management of temporomandibular disorders and occlusion. St. Louis: Mosby; 2003.

    Google Scholar 

  7. Dimitroulis G. The role of surgery in the management of disorders of the temporomandibular joint: a critical review of the literature. Part 2. Int J Oral Maxillofac Surg. 2005;34:231–7.

    PubMed  Google Scholar 

  8. Sarlani E, Greenspan JD. Why look in the brain for answers to temporomandibular disorder pain? Cells Tissues Organs. 2005;180:69–75.

    Article  PubMed  Google Scholar 

  9. Sessle BJ, Yao D, Nishiura H, Yoshino K, Lee JC, Martin RE, et al. Properties and plasticity of the primate somatosensory and motor cortex related to orofacial sensorimotor function. Clin Exp Pharmacol Physiol. 2005;32:109–14.

    Article  PubMed  Google Scholar 

  10. Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci. 2004;24:10410–5.

    Article  PubMed  Google Scholar 

  11. Granziera C, DaSilva AF, Snyder J, Tuch DS, Hadjikhani N. Anatomical alterations of the visual motion processing network in migraine with and without aura. PLoS Med. 2006;3:e402.

    Article  PubMed Central  PubMed  Google Scholar 

  12. DaSilva AF, Granziera C, Snyder J, Hadjikhani N. Thickening in the somatosensory cortex of patients with migraine. Neurology. 2007;69:1990–5.

    Article  PubMed Central  PubMed  Google Scholar 

  13. DaSilva AF, Becerra L, Pendse G, Chizh B, Tully S, Borsook D. Colocalized structural and functional changes in the cortex of patients with trigeminal neuropathic pain. PLoS One. 2008;3:e3396.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, et al. Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage. 2006;32:180–94.

    Article  PubMed  Google Scholar 

  15. Moayedi M, Weissman-Fogel I, Crawley AP, Goldberg MB, Freeman BV, Tenenbaum HC, et al. Contribution of chronic pain and neuroticism to abnormal forebrain gray matter in patients with temporomandibular disorder. Neuroimage. 2011;5:277–86.

    Article  Google Scholar 

  16. Sora I, Takahashi N, Funada M, Ujike H, Revay RS, Donovan DM, et al. Opiate receptor knockout mice define μ receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc Natl Acad Sci U S A. 1997;94.

    Google Scholar 

  17. Zubieta JK, Smith YR, Bueller JM, Xu Y, Kilbourn MR, Meyer CR, et al. Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science. 2011;293:311–5.

    Article  Google Scholar 

  18. Willoch F, Tolle TR, Wester HJ, Munz F, Petzold A, Schwaiger M, et al. Central pain after pontine infarction is associated with changes in opioid receptor binding: a PET study with 11C-diprenorphine. Am J Neuroradiol. 1999;20:686–90.

    PubMed  Google Scholar 

  19. Willoch F, Schindler F, Wester HJ, Empl M, Straube A, Schwaiger M, et al. Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study. Pain. 2004;108:213–20.

    Article  PubMed  Google Scholar 

  20. Harris RE, Clauw DJ, Scott DJ, McLean SA, Gracely RH, Zubieta JK. Decreased central mu-opioid receptor availability in fibromyalgia. J Neurosci. 2007;27:10000–6.

    Article  PubMed  Google Scholar 

  21. DosSantos MF, Martikainen IK, Nascimento TD, Love TM, Deboer MD, Maslowski EC, et al. Reduced basal ganglia mu-opioid receptor availability in trigeminal neuropathic pain: a pilot study. Mol Pain. 2012;8:74.

    Article  PubMed Central  PubMed  Google Scholar 

  22. DaSilva AF, Nascimento TD, Love T, DosSantos MF, Martikainen IK, Cummiford CM, et al. 3D-neuronavigation in vivo through a patient’s brain during a spontaneous migraine headache. J Vis Exp. 2014;(88):e50682. doi:10.3791/50682.

  23. Villringer A, Chance B. Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci. 1997;20:435–42.

    Article  PubMed  Google Scholar 

  24. Chance B, Anday E, Nioka S, Zhou S, Hong L, Worden K, et al. A novel method for fast imaging of brain function, non-invasively, with light. Opt Express. 1998;2:411–23.

    Article  PubMed  Google Scholar 

  25. Izzetoglu M, Izzetoglu K, Bunce S, Ayaz H, Devaraj A, Onaral B, et al. Functional near-infrared neuroimaging. IEEE Trans Neural Syst Rehabil Eng. 2005;13:153–9.

    Article  PubMed  Google Scholar 

  26. Racek AJ, Xu XS, Nascimento TD, Bender MA, DaSilva AF. Real-time assessment of brain activity during dental pain and percussion in a clinical setting. IADR/AADR/CADR General Session, Boston; 2015.

    Google Scholar 

  27. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1:1106–7.

    Article  PubMed  Google Scholar 

  28. Pascual-Leone A, Tarazona F, Keenan J, Tormos JM, Hamilton R, Catala MD. Transcranial magnetic stimulation and neuroplasticity. Neuropsychologia. 1999;37:207–17.

    Article  PubMed  Google Scholar 

  29. Pascual-Leone A, Bartres-Faz D, Keenan JP. Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of ‘virtual lesions’. Philos Trans R Soc Lond B Biol Sci. 1999;354:1229–38.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Brunoni AR, Fregni F, Pagano RL. Translational research in transcranial direct current stimulation (tDCS): a systematic review of studies in animals. Rev Neurosci. 2011;22:471–81.

    Article  PubMed  Google Scholar 

  31. Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N, et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol. 2003;553:293–301.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W. Modulation of cortical excitability by weak direct current stimulation – technical, safety and functional aspects. Suppl Clin Neurophysiol. 2003;56:255–76.

    Article  PubMed  Google Scholar 

  33. Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117:845–50.

    Article  PubMed  Google Scholar 

  34. Lima MC, Fregni F. Motor cortex stimulation for chronic pain: systematic review and meta-analysis of the literature. Neurology. 2008;70:2329–37.

    Article  PubMed  Google Scholar 

  35. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57:1899–901.

    Article  PubMed  Google Scholar 

  37. Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W. Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin Neurophysiol. 2003;114:2220–2; author reply 2222–3.

    Article  PubMed  Google Scholar 

  38. Nitsche MA, Nitsche MS, Klein CC, Tergau F, Rothwell JC, Paulus W. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol. 2003;114:600–4.

    Article  PubMed  Google Scholar 

  39. Garcia-Larrea L, Peyron R, Mertens P, Gregoire MC, Lavenne F, Bonnefoi F, et al. Positron emission tomography during motor cortex stimulation for pain control. Stereotact Funct Neurosurg. 1997;68:141–8.

    Article  PubMed  Google Scholar 

  40. Garcia-Larrea L, Peyron R, Mertens P, Gregoire MC, Lavenne F, Le Bars D, et al. Electrical stimulation of motor cortex for pain control: a combined PET-scan and electrophysiological study. Pain. 1999;83:259–73.

    Article  PubMed  Google Scholar 

  41. Strafella AP, Vanderwerf Y, Sadikot AF. Transcranial magnetic stimulation of the human motor cortex influences the neuronal activity of subthalamic nucleus. Eur J Neurosci. 2004;20:2245–9.

    Article  PubMed  Google Scholar 

  42. Lang N, Siebner HR, Ward NS, Lee L, Nitsche MA, Paulus W, et al. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci. 2005;22:495–504.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Dasilva AF, Mendonca ME, Zaghi S, Lopes M, Dossantos MF, Spierings EL, et al. tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine. Headache. 2012;52(8):1283–95.

    Article  PubMed Central  PubMed  Google Scholar 

  44. DosSantos MF, Love TM, Martikainen IK, Nascimento TD, Fregni F, Cummiford C, et al. Immediate effects of tDCS on the μ-opioid system of a chronic pain patient. Front Psychiatry. 2012;3:93.

    PubMed Central  PubMed  Google Scholar 

  45. Bachmann CG, Muschinsky S, Nitsche MA, Rolke R, Magerl W, Treede RD, et al. Transcranial direct current stimulation of the motor cortex induces distinct changes in thermal and mechanical sensory percepts. Clin Neurophysiol. 2010;121:2083–9.

    Article  PubMed  Google Scholar 

  46. Polania R, Paulus W, Nitsche MA. Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp. 2012;3:2499–508.

    Article  Google Scholar 

  47. DosSantos MF, Martikainen IK, Nascimento TD, Love TM, DeBoer MD, Schambra HM, et al. Building up analgesia in humans via the endogenous mu-opioid system by combining placebo and active tDCS: a preliminary report. PLoS One. 2014;9:e102350.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Donnell A, Nascimento TD, Lawrence M, Gupata V, Zieba T, Truong DQ, et al. High-definition non-invasive brain modulation of sensorimotor dysfunction in chronic TMD. ADR/AADR/CADR General Session, Boston; 2015.

    Google Scholar 

  49. Racek AJ, Hu X, Nascimento TD, Bender MC, Khatib L, Chiego Jr D, Holland GR, Bauer P, McDonald N, Ellwood RP, DaSilva AF. Different brain responses to pain and its expectation in the dental chair. J Dent Res. 2015;94(7):998–1003.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre F. DaSilva DDS, DMedSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

DaSilva, A.F. (2015). The Brain as a Therapeutic Target in TMD and Orofacial Pain: The Next Frontier in Personalized Pain Medicine and Health Technology. In: Polverini, P. (eds) Personalized Oral Health Care. Springer, Cham. https://doi.org/10.1007/978-3-319-23297-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23297-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23296-6

  • Online ISBN: 978-3-319-23297-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics