Skip to main content

From Silico to Vitro: Computational Models of Complex Biological Systems Reveal Real-World Emergent Phenomena

  • Chapter
Computing and Philosophy

Part of the book series: Synthese Library ((SYLI,volume 375))

Abstract

Computer simulations constitute a significant scientific tool for promoting scientific understanding of natural phenomena and dynamic processes. Substantial leaps in computational force and software engineering methodologies now allow the design and development of large-scale biological models, which – when combined with advanced graphics tools – may produce realistic biological scenarios, that reveal new scientific explanations and knowledge about real life phenomena. A state-of-the-art simulation system termed Reactive Animation (RA) will serve as a study case to examine the contemporary philosophical debate on the scientific value of simulations, as we demonstrate its ability to form a scientific explanation of natural phenomena and to generate new emergent behaviors, making possible a prediction or hypothesis about the equivalent real-life phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term Organogenesis refers to the development of a functioning, anatomically specialized organ from a relatively small number of relatively undifferentiated precursor cells, and is critically influenced by factors involving multiple scales, dynamics, and 3D anatomic relationships (Setty et al. 2008).

  2. 2.

    Animation: http://www.wisdom.weizmann.ac.il/~yaki/wisDay/index.html. Demonstrating movie: http://www.pnas.org/content/suppl/2008/12/17/0808725105.DCSupplemental/SM1.mov

  3. 3.

    Extracellular Matrix (ECM) is a collection of extracellular molecules secreted by cells that provides structural and biochemical support to the surrounding cells.

References

  • Bedau, M. A. (2008). Is weak emergence just in the mind? Minds and Machines, 18(4), 443–459.

    Article  Google Scholar 

  • Bedau, M. (2013). Weak emergence drives the science, epistemology, and metaphysics of synthetic biology. Biological Theory, 8(4), 334–345.

    Article  Google Scholar 

  • Bokulich, A. (2011). How scientific models can explain. Synthese, 180(1), 33–45. doi:10.1007/s11229-009-9565-1.

    Article  Google Scholar 

  • Cohen, I. R., & Harel, D. (2007). Explaining a complex living system: Dynamics, multi-scaling and emergence. Journal of the Royal Society Interface, 4, 175–182.

    Article  Google Scholar 

  • Craver, C. F. (2006). When mechanistic models explain. Synthese, 153(3), 355–376.

    Article  Google Scholar 

  • Eckhart, A. (2010). Tools or toys? Stuttgart: Institute of Philosophy, University of Stuttgart.

    Google Scholar 

  • Efroni, S., Harel, D., & Cohen, I. R. (2005). Reactive animation: Realistic modeling of complex dynamic systems. Computer, 38, 38–47. doi:10.1109/MC.2005.31.

    Article  Google Scholar 

  • Efroni, S., Harel, D., & Cohen, I. R. (2007). Emergent dynamics of thymocyte development and lineage determination. PLoS Computational Biology, 3(1), e13. doi:10.1371/journal.pcbi.0030013.

    Article  Google Scholar 

  • Epstein, J. M. (1999). Agent-based computational models and generative social science. Complexity, 4(5), 41–60.

    Article  Google Scholar 

  • Fromm, J. (2005a). Ten questions about emergence. arXiv:nlin/0509049v1 [nlin.AO].

    Google Scholar 

  • Fromm, J. (2005b). Types and forms of emergence. arXiv:nlin/0506028v1 [nlin.AO].

    Google Scholar 

  • Fromm, J. (2006). On engineering and emergence. arXiv:nlin/0601002 [nlin.AO].

    Google Scholar 

  • Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer Programming, 8, 231–274.

    Article  Google Scholar 

  • Harel, D. (2003). A grand challenge for computing: Towards full reactive modeling of a multi-cellular animal. Bulletin of the EATCS, European Association for Theoretical Computer Science, 81, 226–235.

    Google Scholar 

  • Harel, D. (2005). On comprehensive and realistic modeling: Some ruminations on the what, the how and the why. Clinical and Investigative Medicine, 28(6), 334–337.

    Google Scholar 

  • Harel, D., & Setty, Y. (2008). Generic reactive animation: Realistic modeling of complex natural systems. In Proceedings of the 1st international workshop on Formal Methods in Systems Biology (FMSB’08) 2008a (Lecture notes in bioinformatics, Vol. 5054, pp. 1–16). Springer: Springer Berlin Heidelberg.

    Google Scholar 

  • Humphreys, P. (2009). The philosophical novelty of computer simulation methods. Synthese, 169(3), 615–626. doi:10.1007/s11229-008-9435-2.

    Article  Google Scholar 

  • Kam, N., Kugler, H., Marelly, R., Appleby, L., Fisher, J., Pnueli, A., et al. (2008). A scenario-based approach to modeling development: A prototype model of C. elegans vulval fate specification. Developmental Biology, 323, 1–5.

    Article  Google Scholar 

  • Keller, E. F. (2003). Models, simulation and “Computer Experiments”. In H. Radder (Ed.), The philosophy of scientific experimentation (pp. 198–215). Pittsburgh: Pittsburgh University Press.

    Chapter  Google Scholar 

  • Lenhard, J. (2006). Surprised by a nanowire: Simulation, control, and understanding. Philosophy of Science, 73(5), 605–616.

    Article  Google Scholar 

  • Lenhard, J. (2007). Computer simulation: The cooperation between experimenting and modeling. Philosophy of Science, 74(2), 176–194. doi:0031-8248/2007/7402-0003$10.00.

    Google Scholar 

  • Lewis, D. (1973). Counterfactuals and comparative possibility. Journal of Philosophical Logic, 2(4), 418–446.

    Article  Google Scholar 

  • Lewis, D. (1986). Postscripts to “Counterfactual dependence and time’s arrow”. In D. Lewis (Ed.), Philosophical papers: Volume II (pp. 52–66). Oxford: Oxford University Press.

    Google Scholar 

  • McMullin, E. (1985). Galilean idealization. Studies in History and Philosophy of Science Part A, 16(3), 247–273.

    Article  Google Scholar 

  • Morgan, M. S., & Morrison, M. (1999). Models as Mediators: Perspectives on Natural and Social Sciences. Cambridge/New York: Cambridge University Press.

    Book  Google Scholar 

  • Richardson, K. A. (2003). On the limits of bottom-up computer simulation: Towards a nonlinear modelling culture. In Proceedings of the 36th Hawaiian international conference on system science, IEEE, California, 2003.

    Google Scholar 

  • Sargent, R. G. (2009). Verification and validation of simulation models. IEEE proceedings of the 2009 winter simulation conference (pp. 162–176). Austin, Texas, USA.

    Google Scholar 

  • Schindler, S. (2007). Rehabilitating theory: Refusal of the ‘bottom-up’ construction of scientific phenomena. Studies in History and Philosophy of Science, 38, 160–184. doi:10.1016/j.shpsa.2006.12.009.

    Article  Google Scholar 

  • Setty, Y., Cohen, I. R., Dor, Y., & Harel, D. (2008). Four-dimensional realistic modeling of pancreatic organogenesis. Proceedings of the National Academy of Science, 105(51), 20374–20379.

    Article  Google Scholar 

  • Setty, Y., Cohen, I., & Harel, D. (2010). Modeling biology using generic reactive animation. Fundamenta Informaticae, 123, 1–12. doi:10.3233/FI-2010-330.

    Article  Google Scholar 

  • Swerdlin, N., Cohen, I., & Harel, D. (2008). The lymph node B cell immune response: Dynamic analysis In-Silico. Proceedings of the IEEE, 96(8), 1421–1443. doi:10.1109/JPROC.2008.925435.

    Article  Google Scholar 

  • Vainas, O., Harel, D., Cohen, R. I., & Efroni, S. (2011). Reactive animation: From piecemeal experimentation to reactive biological systems. Autoimmunity, 44(4), 1–11. doi:10.3109/08916934.2010.523260.

    Article  Google Scholar 

  • Weber, M. (2002). Theory testing in experimental biology: The chemiosmotic mechanism of ATP synthesis. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 33(1), 29–52. doi:10.1016/S1369-8486(01)00016-4.

    Article  Google Scholar 

  • Winsberg, E. (1999). Sanctioning models: The epistemology of simulation. Science in Context, 12(02), 275–292. doi:10.1017/S0269889700003422.

    Article  Google Scholar 

  • Winsberg, E. (2001). Simulations, models, and theories: Complex physical systems and their representations. Proceedings of the Philosophy of Science Association, 68(3), S442–S454.

    Article  Google Scholar 

  • Winsberg, E. (2003). Simulated experiments: Methodology for a virtual world. Philosophy of Science, 70(1), 105–125.

    Article  Google Scholar 

  • Winsberg, E. (2006). Models of success versus the success of models: Reliability without truth. Synthese, 152(1), 1–19. doi:10.1007/s11229-004-5404-6.

    Article  Google Scholar 

  • Winsberg, E. (2009). Computer simulation and the philosophy of science. Philosophy Compass, 4(5), 835–845.

    Article  Google Scholar 

  • Woodward, J. (2003). Making things happen: A theory of causal explanation. New York: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orly Stettiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stettiner, O. (2016). From Silico to Vitro: Computational Models of Complex Biological Systems Reveal Real-World Emergent Phenomena. In: Müller, V.C. (eds) Computing and Philosophy. Synthese Library, vol 375. Springer, Cham. https://doi.org/10.1007/978-3-319-23291-1_9

Download citation

Publish with us

Policies and ethics