Skip to main content

Genotype x Environment Interactions and Selection Environments

  • Chapter
Plant Breeding: Past, Present and Future
  • 2613 Accesses

Abstract

Differences between genotypes (G) over environments (E) may vary in magnitude or involve changes in ranking. Assessments of G × E interactions are required at the start of breeding to determine the number of programmes required for the target environments and different end uses, and at the finish to make recommendations to farmers and growers. Equally important for success in breeding is the choice of assessment environments at intermediate stages as these affect the sensitivity to environmental change of the selected genotypes, including photoperiod sensitivity. G × E can be detected and investigated by analysis of variance, joint regression analysis, response curves and principal component analysis, and also viewed as correlated responses to selection (conventional versus organic farming). Strategic breeding issues are combining stress tolerance (drought, soil salinity) with high yield potential in the absence of stress, and combining acquisition and utilization efficiency for improved resource use efficiency (nitrogen, phosphorus).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atlin GN, Cooper M, Bjørnstad Å (2001) A comparison of formal and participatory breeding approaches using selection theory. Euphytica 122:463–475

    Article  Google Scholar 

  • Azzalini A, Cox DR (1984) Two new tests associated with analysis of variance. J R Stat Soc Ser B 46:335–343

    Google Scholar 

  • Baenziger P, Graybosch R, Van Sanford D, Berzonsky W (2009) Winter and specialty wheat. In: Carena MJ (ed) Cereals, vol 3, Handbook of plant breeding. Springer, New York, pp 251–265

    Chapter  Google Scholar 

  • Baker RJ (1988) Tests for crossover genotype-environmental interactions. Can J Plant Sci 68:405–410

    Article  Google Scholar 

  • Bingham J (1979) Wheat breeding objectives and prospects. Agric Prog 54:1–17

    Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168

    Article  Google Scholar 

  • Craufurd PQ, Wheeler TR (2009) Climate change and the flowering time of annual crops. J Exp Bot 60:2529–2539

    Article  CAS  PubMed  Google Scholar 

  • Dawson JC, Huggins DR, Jones SS (2008) Characterizing nitrogen use efficiency in natural and agricultural ecosystems to improve the performance of cereal crops in low-input and organic agricultural systems. Field Crop Res 107:89–101

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Harlow, 464p

    Google Scholar 

  • Finlay KW, Wilkinson GN (1963) The analysis of adaptation in a plant-breeding programme. Aust J Agric Res 14:742–754

    Article  Google Scholar 

  • Fritsche-Neto R, Borém A (eds) (2012) Plant breeding for abiotic stress tolerance. Springer, Heidelberg, 175p

    Google Scholar 

  • Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488:535–539. doi:10.1038/nature11346

    Article  CAS  PubMed  Google Scholar 

  • Gauch HG Jr (1988) Model selection and validation for yield trials with interaction. Biometrics 44:705–715

    Article  Google Scholar 

  • Gauch HG Jr, Piepho HP, Annicchiarico P (2008) Statistical analysis of yield trials by AMMI and GGE: further considerations. Crop Sci 48:866–889

    Article  Google Scholar 

  • Goldstein WA, Schmidt W, Burger H, Messmer M, Pollak LM, Smith ME, Goodman MM, Kutka FJ, Pratt RC (2012) Maize: breeding and field testing for organic farmers. In: Lammerts van Bueren ET, Myers JR (eds) Organic crop breeding. Wiley, Chichester, pp 175–189

    Google Scholar 

  • Hung H-Y, Shannon LM, Tian F, Bradbury PJ, Chen C, Flint-Garcia SA, McMulleng MD, Ware D, Buckler ES, Doebley JF, Holland JB (2012a) ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc Natl Acad Sci 109:E1913–E1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung H-Y, Browne C, Guill K, Coles N, Eller M, Garcia A, Lepak N, Melia-Hancock S, Oropeza-Rosas M, Salvo S, Upadyayula N, Buckler ES, Flint-Garcia S, McMullen MD, Rocheford TR, Holland JB (2012b) The relationship between parental genetic or phenotypic divergence and progeny variation in the maize nested association mapping population. Heredity 108:490–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinks JL, Connolly V (1973) Selection for specific and general response to environmental differences. Heredity 30:33–40

    Article  Google Scholar 

  • Jinks JL, Connolly V (1975) Determination of the environmental sensitivity of selection lines by the selection environment. Heredity 34:401–406

    Article  CAS  PubMed  Google Scholar 

  • Jinks JL, Pooni HS (1982) Determination of the environmental sensitivity of selection lines of Nicotiana rustica by the selection environment. Heredity 49:291–294

    Article  Google Scholar 

  • Kempton RA (1984) The use of biplots in interpreting variety by environment interactions. J Agric Sci (Camb) 103:123–135

    Article  Google Scholar 

  • Knight R (1970) The measurement and interpretation of genotype-environment interactions. Euphytica 19:225–235

    Article  Google Scholar 

  • Knight R (1973) The relation between hybrid vigour and genotype-environment interactions. Theor Appl Genet 43:311–318

    Article  CAS  PubMed  Google Scholar 

  • Leiser WL, Rattunde HFW, Piepho HP, Weltzien E, Diallo A, Melchinger AE, Parzies HK, Haussmann BIG (2012) Selection strategy for sorghum targeting phosphorus-limited environments in West Africa: analysis of multi-environment experiments. Crop Sci 52:2517–2527. doi:10.2135/cropsci2012.02.0139

    Article  Google Scholar 

  • Lin CS, Binns MR, Lefkovitch LP (1986) Stability analysis: where do we stand? Crop Sci 26:894–900

    Article  Google Scholar 

  • Luna R, Planchon C (1995) Genotype × Bradyrhizobium japonicum strain interactions in dinitrogen fixation and agronomic traits of soybean (Glycine max L. Merr.). Euphytica 86:127–134

    Article  CAS  Google Scholar 

  • Maheswaran M, Huang N, Sreerangasamy SR, McCouch SR (2000) Mapping quantitative trait loci associated with days to flowering and photoperiod sensitivity in rice (Oryza sativa L.). Mol Breed 6:145–155

    Article  CAS  Google Scholar 

  • Mergoum M, Singh PK, Anderson JA, Peña RJ, Singh RP, Xu SS, Ransom JK (2009a) Spring wheat breeding. In: Carena MJ (ed) Cereals, vol 3, Handbook of plant breeding. Springer, New York, pp 127–156

    Google Scholar 

  • Messmer M, Hildermann I, Thorup-Kristensen K, Rengel Z (2012) Nutrient management in organic farming and consequences for direct and indirect selection strategies. In: Lammerts van Bueren ET, Myers JR (eds) Organic crop breeding. Wiley, Chichester, pp 15–38

    Google Scholar 

  • Moore R, Clark WD, Vodopich DS (1998) Botany, 2nd edn. WCB/McGraw-Hill, New York, 919p

    Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D, Gilliham M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364. doi:10.1038/nbt.2120

    Article  CAS  PubMed  Google Scholar 

  • Posselt UK (2010) Breeding methods in cross-pollinated species. In: Boller B, Posselt UK, Veronesi F (eds) Fodder crops and amenity grasses, vol 5, Handbook of plant breeding. Springer, New York, pp 39–87

    Chapter  Google Scholar 

  • Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Res Forum. doi:10.1111/1477-8947.12054

    Google Scholar 

  • Raun WR, Johnson GV (1999) Improving nitrogen use efficiency for cereal production. Agron J 91:357–363

    Article  Google Scholar 

  • Reddy NRR, Ragimasalawada M, Sabbavarapu MM, Nadoor S, Patil JV (2014) Detection and validation of stay-green QTL in post-rainy sorghum involving widely adapted cultivar, M35-1 and a popular stay-green genotype B35. BMC Genomics 15:909. doi:10.1186/1471-2164-15-909

    Article  Google Scholar 

  • Reid TA, Yang RC, Salmon DF, Navabi A, Spaner D (2011) Realized gains from selection for spring wheat grain yield are different in conventional and organically managed systems. Euphytica 177:253–266

    Article  Google Scholar 

  • Robinson DL (1984) A study of sequential variety selection systems. J Agric Sci (Camb) 102:119–126

    Article  Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Shigyo M, Kik C (2008) Onion. In: Prohens J, Nuez F (eds) Vegetables II, vol 2, Handbook of plant breeding. Springer, New York, pp 121–159

    Chapter  Google Scholar 

  • Simmonds NW (1981) Genotype (G), Environment (E) and GE components of crop yields. Exp Agric 17:355–362

    Article  Google Scholar 

  • Simon PW, Freeman RE, Vieira JV, Boiteux LS, Briard M, Nothnagel T, Michalik B, Kwon Y-S (2008) Carrot. In: Prohens J, Nuez F (eds) Vegetables II, vol 2, Handbook of plant breeding. Springer, New York, pp 327–357

    Chapter  Google Scholar 

  • Singh RP, Trethowan R (2007) Breeding spring bread wheat for irrigated and rainfed production systems of the developing world. (2007). In: Kang MS, Priyadarshan PM (eds) Breeding major food staples. Blackwell, Oxford, pp 109–140

    Google Scholar 

  • Slater A, Scott NW, Fowler MR (2008) Plant biotechnology: the genetic manipulation of plants, 2nd edn. Oxford University Press, Oxford, 376p

    Google Scholar 

  • Talbot M (1984) Yield variability of crop varieties in the U.K. J Agric Sci (Camb) 102:315–321

    Article  Google Scholar 

  • Talbot M (1997) Resource allocation for selection systems. In: Kempton RA, Fox PN (eds) Statistical methods for plant variety evaluation. Chapman & Hall, London, pp 162–174

    Chapter  Google Scholar 

  • Teixeira JEC, Weldekidan T, de Leon N, Flint-Garcia S, Holland JB, Lauter N, Murray SC, Xu W, Hessel DA, Kleintop AE, Hawk JA, Hallauer A, Wisser RJ (2015) Hallauer’s Tusón: a decade of selection for tropical-to-temperate phenological adaptation in maize. Heredity 114:229–240

    Google Scholar 

  • Van Ginkel M, Ortiz-Monasterio I, Trethowan R, Hernandez E (2001) Methodology for selecting segregating populations for improved N-use efficiency in bread wheat. Euphytica 119:223–230

    Article  Google Scholar 

  • Virmani SS, Ilyas-Ahmed M (2007) Rice breeding for sustainable production. In: Kang MS, Priyadarshan PM (eds) Breeding major food staples. Blackwell, Oxford, pp 141–191

    Chapter  Google Scholar 

  • Vollman J, Menken M (2012) Soybean: breeding for organic farming systems. In: Lammerts van Bueren ET, Myers JR (eds) Organic crop breeding. Wiley, Chichester, pp 203–214

    Google Scholar 

  • Wang X, Shen J, Liao H (2010) Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Sci 179:302–306

    Article  CAS  Google Scholar 

  • Xu Y (2010) Molecular plant breeding. CABI, Wallingford, 734p

    Book  Google Scholar 

  • Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182. doi:10.1146/annurev-arplant-042811-105532

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Kang MS, Ma B, Woods S, Cornelius PL (2007) GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci 47:643–653

    Article  Google Scholar 

  • Zobel RW, Wright MJ, Gauch HG Jr (1988) Statistical analysis of a yield trial. Agron J 80:388–393

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bradshaw, J.E. (2016). Genotype x Environment Interactions and Selection Environments. In: Plant Breeding: Past, Present and Future. Springer, Cham. https://doi.org/10.1007/978-3-319-23285-0_7

Download citation

Publish with us

Policies and ethics