Skip to main content

Quantitative Genetics and Genomic Selection

  • Chapter
Plant Breeding: Past, Present and Future
  • 2659 Accesses

Abstract

Most economically important traits such as yield display continuous variation which results from segregation at a number of Quantitative Trait Loci (QTLs) together with the effects of non-heritable environmental factors. QTLs can be located and studied through their linkage to abundantly available molecular (DNA) markers such as Single Nucleotide Polymorphism (SNP) ones discovered from high-throughput genotyping. Analysis can be done in segregating populations (interval mapping), through construction of chromosome segment substitution lines (CSSLs), and on populations of germplasm (GWAS: genome wide association mapping studies). Markers tightly linked to desirable QTL alleles can be used for marker assisted selection or all markers can be used in genomic selection (GS) to predict the genetic values of breeding material. A prerequisite for these genetic analyses, and also for confirmation of the results of selection, is accurate phenotyping (preferably high-throughput) in randomized and replicated field trials, with control of within-trial heterogeneity and inter-plot interference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19:52–61. doi:10.1016/j.tplants.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw JE (1986) Competition between cultivars of fodder kale in yield trials with single-row plots. Euphytica 35:433–439

    Article  Google Scholar 

  • Bradshaw JE (1989) Interplot competition in yield trials of swedes. Euphytica 42:135–140

    Article  Google Scholar 

  • Bradshaw JE (1994a) Assessment of five cultivars of potato (Solanum tuberosum L.) in a competition diallel. Ann Appl Biol 125:533–540

    Article  Google Scholar 

  • Bradshaw JE, Bonierbale M (2010) Potatoes. In: Bradshaw JE (ed) Root and tuber crops, vol 7, Handbook of plant breeding. Springer, New York, pp 1–52

    Chapter  Google Scholar 

  • Bryan GJ, McLean K, Bradshaw JE, De Jong WS, Phillips M, Castelli L, Waugh R (2002) Mapping QTLs for resistance to the cyst nematode Globodera pallida derived from the wild potato species Solanum vernei. Theor Appl Genet 105:68–77

    Article  CAS  PubMed  Google Scholar 

  • Bryan GJ, McLean K, Pande B, Purvis A, Hackett CA, Bradshaw JE, Waugh R (2004) Genetical dissection of H3-mediated polygenic PCN resistance in a heterozygous autotetraploid potato population. Mol Breed 14:105–116

    Article  CAS  Google Scholar 

  • Bulmer MG (1967) Principles of statistics, 2nd edn. Oliver & Boyd, Edinburgh, 252p

    Google Scholar 

  • Caromel B, Mugniery D, Kerlan M-C, Andrzejewski S, Palloix A, Ellisseche D, Rouselle-Bourgeois F, Lefebvre V (2005) Resistance quantitative trait loci originating from Solanum sparsipilum act independently on the sex ratio of Globodera pallida and together for developing a necrotic reaction. Mol Plant Microbe Interact 18:1186–1194

    Article  CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cockram J, White J, Zuluaga DL, Smith D, Comadran J, Macaulay M, Luo Z, Kearsey MJ, Werner P, Harrap D, Tapsell C, Liu H, Hedley PE, Stein N, Schulte D, Steuernagel B, Marshall DF, Thomas WTB, Ramsay L, Mackay I, Balding DJ, The AGOUEB Consortium, Waugh R, O’Sullivan DM (2010) Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proc Natl Acad Sci 107:21611–21616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly T, Currie ID, Bradshaw JE, McNicol JW (1993) Interplot competition in yield trials of potatoes (Solanum tuberosum L.) with single-drill plots. Ann Appl Biol 123:367–377

    Article  Google Scholar 

  • Crossa J, de los Campos G, Perez P, Gianola D, Burgueno J, Araus JL, Makumbi D, Singh RP, Dreisigacker S, Yan J, Arief V, Banziger M, Braun H-J (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crossa J, Pérez P, Hickey J, Burgueño J, Ornella L, Cerón-Rojas J, Zhang X, Dreisigacker S, Babu R, Li Y, Bonnett D, Mathews K (2014) Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 112:48–60. doi:10.1038/hdy.2013.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MPL (2013) Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics 193:327–345

    Article  PubMed  PubMed Central  Google Scholar 

  • Druka A, Potokina E, Luo Z, Jiang N, Chen X, Kearsey M, Waugh R (2010) Expression quantitative trait loci analysis in plants. Plant Biotechnol J 8:10–27

    Article  CAS  PubMed  Google Scholar 

  • East EM (1915) Studies on size inheritance in Nicotiana. Genetics 1:164–176

    Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Harlow, 464p

    Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher RA (1918) The correlation between relatives on the supposition of Mendelian inheritance. Trans R Soc Edinb 52:399–433

    Article  Google Scholar 

  • Fisher RA, Yates F (1963) Statistical tables, 6th edn. Oliver & Boyd, Edinburgh, 146p

    Google Scholar 

  • Fonceka D, Tossim HA, Rivallan R, Vignes H, Lacut E, de Bellis F, Faye I, Ndoye O, Leal-Bertioli SCM, Valls JFM, Bertioli DJ, Glaszmann JC, Courtois B, Rami JF (2012) Construction of chromosome segment substitution lines in peanut (Arachis hypogaea L.) using a wild synthetic and QTL mapping for plant morphology. PLoS One 7(11), e48642. doi:10.1371/journal.pone.0048642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuta T, Uehara K, Angeles-Shim RB, Shim J, Ashikari M, Takashi T (2014) Development and evaluation of chromosome segment substitution lines (CSSLs) carrying chromosome segments derived from Oryza rufipogon in the genetic background of Oryza sativa L. Breed Sci 63:468–475. doi:10.1270/jsbbs.63.468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleeson AC (1997) Spatial analysis. In: Kempton RA, Fox PN (eds) Statistical methods for plant variety evaluation. Chapman & Hall, London, pp 68–85

    Chapter  Google Scholar 

  • Hansen BG, Halkier BA, Kliebenstein DJ (2008) Identifying the molecular basis of QTLs: eQTLs add a new dimension. Trends Plant Sci 13:72–77

    Article  CAS  PubMed  Google Scholar 

  • Henderson CR (1950) Estimation of genetic parameters. Ann Math Stat 21:309–310

    Google Scholar 

  • Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12:55–67

    Article  Google Scholar 

  • Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen NF, Federer WT (1964) Adjacent row competition in wheat. Crop Sci 4:641–645

    Article  Google Scholar 

  • Jonas E, de Koning D-J (2013) Does genomic selection have a future in plant breeding? Trends Biotechnol 31:497–504

    Article  CAS  PubMed  Google Scholar 

  • Kawano K, Amaya A, Daza P, Rios M (1978) Factors affecting efficiency of hybridization and selection in cassava. Crop Sci 18:373–376

    Article  Google Scholar 

  • Kearsey MJ, Pooni HS (1996) The genetical analysis of quantitative traits. Chapman & Hall, London, 381p

    Book  Google Scholar 

  • Kempton RA (1982) Adjustment for competition between varieties in plant breeding trials. J Agric Sci (Camb) 103:123–135

    Article  Google Scholar 

  • Kempton RA (1997) Interference between plots. In: Kempton RA, Fox PN (eds) Statistical methods for plant variety evaluation. Chapman & Hall, London, pp 101–116

    Chapter  Google Scholar 

  • Kempton RA, Lockwood G (1984) Interplot competition in variety trials of field beans (Vicia faba L.). J Agric Sci (Camb) 103:293–301

    Article  Google Scholar 

  • King IP, Morgan WG, Armstead IP, Harper JA, Hayward MD, Bollard A, Nash JV, Forster JW, Thomas HM (1998) Introgression mapping in the grasses. I Introgression of Festuca pratensis chromosomes and chromosome segments into Lolium perenne. Heredity 81:462–467. doi:10.1046/j.1365-2540.1998.00437.x

    Article  CAS  Google Scholar 

  • King IP, Morgan WG, Harper JA, Thomas HM (1999) Introgression mapping in the grasses. II Meiotic analysis of the Lolium perenne/Festuca pratensis triploid hybrid. Heredity 82:107–112. doi:10.1038/sj.hdy.6884680

    Article  Google Scholar 

  • King J, Roberts LA, Kearsey MJ, Thomas HM, Jones RN, Huang L, Armstead IP, Morgan WG, King IP (2002) A demonstration of a 1:1 correspondence between chiasma frequency and recombination using a Lolium perenne/Festuca pratensis substitution. Genetics 161:307–314

    CAS  PubMed  PubMed Central  Google Scholar 

  • King J, Armstead IP, Donnison SI, Roberts LA, Harper JA, Skøt K, Elborough K, King IP (2007) Comparative analyses between Lolium/Festuca introgression lines and rice reveal the major fraction of functionally annotated gene models is located in recombination-poor/very recombination-poor regions of the genome. Genetics 177:597–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu BH (1998) Statistical genomics: linkage, mapping, and QTL analysis. CRC, Boca Raton, 611p

    Google Scholar 

  • Liu W, Maurer HP, Reif JC, Melchinger AE, Utz HF, Tucker MR, Ranc N, Porta GD, Würschum T (2013) Optimum design of family structure and allocation of resources in association mapping with lines from multiple crosses. Heredity 110:71–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland, 980p

    Google Scholar 

  • Mather KA, Caicedo AL, Polato NR, Olsen KM, McCouch S, Purugganan MD (2007) The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics 177:2223–2232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mead R (1997) Design of plant breeding trials. In: Kempton RA, Fox PN (eds) Statistical methods for plant variety evaluation. Chapman & Hall, London, pp 40–67

    Chapter  Google Scholar 

  • Mead R, Curnow RN, Hasted AM (2002) Statistical methods in agriculture and experimental biology, 3rd edn. Chapman and Hall/CRC, Boca Raton, 488p

    Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miedaner T, Wilde F, Korzun V, Ebmeyer E, Schmolke M, Hartl L, Schön CC (2009) Marker selection for Fusarium head blight resistance based on quantitative trait loci (QTL) from two European sources compared to phenotypic selection in winter wheat. Euphytica 166:219–227. doi:10.1007/s10681-008-9832-0

    Article  CAS  Google Scholar 

  • Nilsson-Ehle H (1909) Kreuzunguntersuchungen an Hafer und Weizen. Acta Univ. Lund. Ser 2, 5, no 2: 1–122

    Google Scholar 

  • Patterson HD, Hunter EA (1983) The efficiency of incomplete block designs in national list and recommended list cereal variety trials. J Agric Sci (Camb) 101:427–433

    Article  Google Scholar 

  • Patterson HD, Robinson DL (1989) Row-and-column designs with two replicates. J Agric Sci (Camb) 112:73–77

    Article  Google Scholar 

  • Patterson HD, Williams ER, Hunter EA (1978) Block designs for variety trials. J Agric Sci (Camb) 90:395–400

    Article  Google Scholar 

  • Patterson LJ, Wild P, Williams ER (1988) An algorithm to generate designs for variety trials. J Agric Sci (Camb) 111:133–136

    Article  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ratcliffe B, El-Dien OG, KlápÅ¡tÄ› J, Porth I, Chen C, Jaquish B, El-Kassaby YA (2015) A comparison of genomic selection models across time in Interior Spruce (Picea engelmannii × glauca) using high density SNP imputation methods. Heredity advance online publication, July 1, 2015; doi:10.1038/hdy.2015.57

    Google Scholar 

  • Robinson DL, Kershaw CD, Ellis RP (1988) An investigation of two-dimensional yield variability in breeders’ small plot trials. J Agri Sci (Camb) 111:419–426

    Article  Google Scholar 

  • Rouppe van der Voort JNAM, van der Vossen E, Bakker E, Overmars H, van Zandroort P, Hutten R, Lankhorst RK, Bakker J (2000) Two additive QTL conferring broad-spectrum resistance in potato to Globodera pallida are localized on resistance gene clusters. Theor Appl Genet 101:1122–1130

    Article  CAS  Google Scholar 

  • Searle SR (1966) Matrix algebra for the biological sciences. Wiley, New York, 296p

    Google Scholar 

  • Simmonds NW (1981) Genotype (G), Environment (E) and GE components of crop yields. Exp Agric 17:355–362

    Article  Google Scholar 

  • Skøt L, Humphreys J, Humphreys MO, Thorogood D, Gallagher J, Sanderson R, Armstead IP, Thomas ID (2007) Association of candidate genes with flowering time and water-soluble carbohydrate content in Lolium perenne (L.). Genetics 177:535–547

    Article  PubMed  PubMed Central  Google Scholar 

  • Stich B, Mohring J, Piepho H-P, Heckenberger M, Buckler ES, Melchinger AE (2008) Comparison of mixed-model approaches for association mapping. Genetics 178:1745–1754

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun G, Zhu C, Kramer MH, Yang S-S, Song W, Piepho H-P, Yu J (2010) Variation explained in mixed-model association mapping. Heredity 105:333–340

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183. doi:10.1111/tpj.12105

    Article  CAS  PubMed  Google Scholar 

  • Talbot M, Milner AD, Nutkins MAE, Law JR (1995) The effect of interference between plots on yield performance in crop variety trials. J Agric Sci (Camb) 124:335–342

    Article  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the LASSO. J R Stat Soc Ser B 58:267–288

    Google Scholar 

  • Utz HF, Melchinger AE, Schön CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849

    PubMed  PubMed Central  Google Scholar 

  • Würschum T, Kraft T (2014) Cross-validation in association mapping and its relevance for the estimation of QTL parameters of complex traits. Heredity 112:463-468 Würschum T, Kraft T (2015) Evaluation of multi-locus models for genome-wide association studies: a case study in sugar beet. Heredity 114:281–290. doi:10.1038/hdy.2014.98

    Google Scholar 

  • Xu S (2003) Theoretical basis of the Beavis effect. Genetics 165:2259–2268

    PubMed  PubMed Central  Google Scholar 

  • Xu Y (2010) Molecular plant breeding. CABI, Wallingford, 734p

    Book  Google Scholar 

  • Yang D, Zhang Y, Zhu Z, Chen T, Zhao Q, Yao S, Zhao L, Zhu W, Wang C (2013a) Substitutional mapping the cooked rice elongation by using chromosome segment substitution lines in rice. Mol Plant Breed 4:107–115. doi:10.5376/mpb.2013.04.0013

    Google Scholar 

  • Yates F (1936) A new method of arranging variety trials involving a large number of varieties. J Agric Science (Camb) 26:424–455

    Article  Google Scholar 

  • Yates F (1937) A further note on the arrangement of variety trials: Quasi-Latin squares. Ann Eugen 7:121–140

    Article  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2005) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  Google Scholar 

  • Zeng ZB (1993) Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci 90:10972–10976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Pérez-Rodríguez P, Kassa S, Beyene Y, Babu R, López Cruz MA, Vicente FS, Olsen M, Buckler E, Jannink J-L, Prasanna BM, Crossa J (2015) Genomic prediction in bi-parental tropical maize populations in water-stressed and well-watered environments using low density and GBS SNPs. Heredity 114:291–299

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bradshaw, J.E. (2016). Quantitative Genetics and Genomic Selection. In: Plant Breeding: Past, Present and Future. Springer, Cham. https://doi.org/10.1007/978-3-319-23285-0_6

Download citation

Publish with us

Policies and ethics