Skip to main content

Scientific Breeding in the Twentieth Century and Future Goals

  • Chapter
Plant Breeding: Past, Present and Future

Abstract

Advances in genetics and cytology during the first half of the twentieth century informed the development of new plant breeding methods. Variable landraces were increasingly replaced by higher yielding and more uniform cultivars, the type determined by the mode of reproduction (sexual or asexual) and mating system (self-pollination or cross-pollination) of the cultivated plant species. Molecular breeding methods, including genetic modification, were added following the publication of the molecular structure of DNA in 1953. Four major achievements over the last 115 years are considered: the commercial success of hybrid maize in the USA; the Green Revolution and the prevention of famine in India; increased potato production in China and India; and the advent of genetically modified crops. Future goals are considered in broad terms, with an emphasis on increased but sustainable food production during a period of climate change, given the requirements of crops for plant growth, development and reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avery OT, Macleod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus Type III. J Exp Med 79:137–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell A (2009) Peak water. Luath, Edinburgh, 207p

    Google Scholar 

  • Berners-Lee M, Clark D (2013) The burning question. Profile Books, London, 268p

    Google Scholar 

  • Blakeslee AF, Avery AG (1937) Methods of inducing doubling of chromosomes in plants, by treatment with colchicine. J Hered 28:392–411

    Google Scholar 

  • Bradshaw JE, Bonierbale M (2010) Potatoes. In: Bradshaw JE (ed) Root and tuber crops, vol 7, Handbook of plant breeding. Springer, New York, pp 1–52

    Chapter  Google Scholar 

  • Carson R (1962) Silent spring. Penguin Books, Harmondsworth, 317p

    Google Scholar 

  • Cohen SN, Chang ACY, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci 69:2110–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desclaux D, Ceccarelli S, Navazio J, Coley M, Trouche G, Aguirre S, Weltzien E, Lançon J (2012) Centralized or decentralized breeding: the potentials of participatory approaches for low-input and organic agriculture. In: Lammerts van Bueren ET, Myers JR (eds) Organic crop breeding. Wiley, Chichester, pp 99–123

    Google Scholar 

  • Dikӧtter F (2010) Mao’s great famine. Bloomsbury, London, 420p

    Google Scholar 

  • East EM (1908) Inbreeding in corn. In Connecticut Agricultural Experiments Station Report 1907, pp 419–428

    Google Scholar 

  • East EM (1915) Studies on size inheritance in Nicotiana. Genetics 1:164–176

    Google Scholar 

  • Evans LT (1996) Crop evolution, adaptation and yield. Cambridge University Press, Cambridge, 500p

    Google Scholar 

  • Eversole K (2012) The combined strategies of the IWGSC to achieve a reference sequence of the bread wheat genome. In: Bedő Z, Láng L (eds) Plant breeding for future generations. Proceedings of the 19th EUCARPIA General Congress. Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, pp 58–61

    Google Scholar 

  • FAO, IFAD, WFP (2015) The state of food insecurity in the world 2015—Meeting the 2015 international hunger targets: taking stock of uneven progress. FAO, Rome, 56p

    Google Scholar 

  • Fisher RA (1918) The correlation between relatives on the supposition of Mendelian inheritance. Trans R Soc Edinb 52:399–433

    Article  Google Scholar 

  • Gilbert N (2009) The disappearing nutrient. Nature 461:716–718

    Article  CAS  PubMed  Google Scholar 

  • Gilbert N (2013) Case studies: a hard look at GM crops. Nature 497:24–26

    Article  CAS  PubMed  Google Scholar 

  • Godfray HCJ (2014) How can 9-10 billion people be fed sustainably and equitably by 2050? In: Goldin I (ed) Is the planet full? Oxford University Press, Oxford, pp 104–120

    Chapter  Google Scholar 

  • Gustafsson Å, MacKey J (1948) The genetical effects of mustard gas substances and neutrons. Hereditas 34:371–386

    Article  CAS  Google Scholar 

  • Hahlbrock K (2009) Feeding the planet: environmental protection through sustainable agriculture. Haus, London, 266p

    Google Scholar 

  • Heldt H-W, Piechulla B (2011) Plant biochemistry, 4th edn. Academic, London, 622p

    Google Scholar 

  • Henry M, Beguin M, Requier F, Rollin O, Odoux J-F, Aupinel P, Aptel J, Tchamitchian S, Decourtye A (2012) A common pesticide decreases foraging success and survival in honey bees. Science 336:348–350. doi:10.1126/science.1215039

    Article  CAS  PubMed  Google Scholar 

  • Howden NJK, Burt TP, Worrall F, Mathias S, Whelan MJ (2011) Nitrate pollution in intensively farmed regions: what are the prospects for sustaining high-quality groundwater? Water Resour Res 47:W00L02. doi:10.1029/2011WR010843

    Google Scholar 

  • Jaggard KW, Qi A, Ober ES (2010) Possible changes to arable crop yields by 2050. Phil Trans R Soc B 365:2835–2851

    Article  PubMed  PubMed Central  Google Scholar 

  • James C (2014) Global status of commercialized Biotech/GM Crops: 2014. ISAAA Brief No. 49. ISAAA, Ithaca, 259p

    Google Scholar 

  • Johannsen W (1909) Elemente der exakten Erblichkeitslehre. Fischer, Jena

    Google Scholar 

  • Jones DF (1918) The effects of inbreeding and crossbreeding upon development. Connecticut Agric Exp Stn Bull 207:5–100

    Google Scholar 

  • King J (2011) Reaching for the sun. How plants work, 2nd edn. Cambridge University Press, Cambridge, 298p

    Google Scholar 

  • Kingsbury N (2009) Hybrid: the history & science of plant breeding. The University of Chicago Press, Chicago, 493p

    Book  Google Scholar 

  • Klümper W, Qaim M (2014) A meta-analysis of the impacts of genetically modified crops. PLoS One 9, e111629. doi:10.1371/journal.pone.0111629

    Article  PubMed  PubMed Central  Google Scholar 

  • Leister D (2012) How can the light reactions of photosynthesis be improved in plants? Front Plant Sci 3:199. doi:10.3389/fpls.2012.00199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lusser M, Parisi C, Plan D, Rodríguez-Cerezo E (2012) Deployment of new biotechnologies in plant breeding. Nat Biotechnol 30:231–239

    Article  CAS  PubMed  Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci 74:560–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKevitt S, Ryan T (2013) Project sunshine. Icon Books Ltd, London, 304p

    Google Scholar 

  • McMahon P (2013) Feeding frenzy. Profile Books, London, 314p

    Google Scholar 

  • McNaughton IH (1973) Synthesis and sterility of Raphanobrassica. Euphytica 22:70–88

    Article  Google Scholar 

  • Mergoum M, Singh PK, Peña RJ, Río AJL, Cooper KV, Salmon DF, Macpherson HG (2009b) Triticale: a “new” crop with old challenges. In: Carena MJ (ed) Cereals, vol 3, Handbook of plant breeding. Springer, New York, pp 267–287

    Chapter  Google Scholar 

  • Meyer RS, DuVal AE, Jensen HR (2012) Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol 196:29–48. doi:10.1111/j.1469-8137.2012.04253.x

    Article  PubMed  Google Scholar 

  • Moore R, Clark WD, Vodopich DS (1998) Botany, 2nd edn. WCB/McGraw-Hill, New York, 919p

    Google Scholar 

  • Muller HJ (1927) Artificial transmutation of the gene. Science 66:84–87

    Article  CAS  PubMed  Google Scholar 

  • Nilsson-Ehle H (1909) Kreuzunguntersuchungen an Hafer und Weizen. Acta Univ. Lund. Ser 2, 5, no 2: 1–122

    Google Scholar 

  • Peng S, Khush GS (2003) Four decades of breeding for varietal improvement of irrigated lowland rice in the International Rice Research Institute. Plant Prod Sci 6:157–164

    Article  Google Scholar 

  • Pillay M, Tripathi L (2007) Banana breeding. In: Kang MS, Priyadarshan PM (eds) Breeding major food staples. Blackwell, Oxford, pp 393–428

    Chapter  Google Scholar 

  • Pingali PL (2012) Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci 109:12302–12308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Primrose SB, Twyman RM (2006) Principles of gene manipulation and genomics, 7th edn. Wiley-Blackwell, Oxford, 672p

    Google Scholar 

  • Prohens J, Nuez F, Carena MJ (2008) Handbook of plant breeding. Springer, New York

    Google Scholar 

  • Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Res Forum. doi:10.1111/1477-8947.12054

    Google Scholar 

  • Qin X, Zhang F, Liu C, Yu H, Cao B, Tian S, Liao Y, Siddique KHM (2015) Wheat yield improvements in China: past trends and future directions. Field Crop Res 177:117–124

    Article  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8(6), e66428. doi:10.1371/journal.pone.0066428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reheul D, De Cauwer B, Cougnon M (2010) The role of forage crops in multifunctional agriculture. In: Boller B, Posselt UK, Veronesi F (eds) Fodder crops and amenity grasses, vol 5, Handbook of plant breeding. Springer, New York, pp 1–12

    Chapter  Google Scholar 

  • Robin M-M (2008) The world according to Monsanto. The New Press, New York, 372p

    Google Scholar 

  • Rosenthal DM, Ort DR (2012) Examining cassava’s potential to enhance food security under climate change. Trop Plant Biol 5:30–38

    Article  Google Scholar 

  • Rosenthal DM, Slattery RA, Miller RE, Grennan AK, Cavagnaro TR, Fauquet CM, Gleadow RM, Ort DR (2012) Cassava about-FACE: Greater than expected yield stimulation of cassava (Manihot esculenta) by future CO2 levels. Glob Chang Biol 18:2661–2675. doi:10.1111/j.1365-2486.2012.02726.x

    Article  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci 74:5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seppelt R, Manceur AM, Liu J, Fenichel EP, Klotz S (2014) Synchronized peak-rate years of global resources use. Ecol Soc 19:50. doi:10.5751/ES-07039-190450

    Article  Google Scholar 

  • Shull GH (1908) The composition of a field of maize. Am Breeders’ Assoc Rep 4:296–301

    Google Scholar 

  • Shull GH (1909) A pure-line method of corn breeding. Am Breed Assoc Rep 5:51–59

    Google Scholar 

  • Singh RP, Trethowan R (2007) Breeding spring bread wheat for irrigated and rainfed production systems of the developing world. (2007). In: Kang MS, Priyadarshan PM (eds) Breeding major food staples. Blackwell, Oxford, pp 109–140

    Google Scholar 

  • Stadler LJ (1928a) Genetic effects of X rays in maize. Proc Natl Acad Sci U S A 14:69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadler LJ (1928b) Mutations in barley induced by X-rays and radium. Science 68:186–187

    Article  CAS  PubMed  Google Scholar 

  • Troyer AF (2004) Champaign County, Illinois, and the origin of hybrid corn. In: Janick J (ed) Plant breeding reviews, vol 24, Part 1: Long-term selection: maize. Wiley, Hoboken, pp 41–59

    Google Scholar 

  • Troyer AF (2006) Adaptedness and heterosis in corn and mule hybrids. Crop Sci 46:528–543

    Article  Google Scholar 

  • van Harten AM (1998) Mutation breeding theory and applications. Cambridge University Press, Cambridge, 353p

    Google Scholar 

  • Vanuytrecht E, Raes D, Willems P, Geerts S (2012) Quantifying field-scale effects of elevated carbon dioxide concentration on crops. Climate Res 54:35–47. doi:10.3354/cr01096

    Article  Google Scholar 

  • Virmani SS, Ilyas-Ahmed M (2007) Rice breeding for sustainable production. In: Kang MS, Priyadarshan PM (eds) Breeding major food staples. Blackwell, Oxford, pp 141–191

    Chapter  Google Scholar 

  • von Caemmerer S, Quick WP, Furbank RT (2012) The development of C4 rice: current progress and future challenges. Science 336:1671–1672. doi:10.1126/science.1220177

    Article  Google Scholar 

  • Watson JD (2003) DNA: the secret of life. William Heinemann, London, 446p

    Google Scholar 

  • Watson JD, Crick FHC (1953a) A structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

  • Watson JD, Crick FHC (1953b) Genetical implications of the structure of deoxyribose nucleic acid. Nature 171:964–967

    Article  CAS  PubMed  Google Scholar 

  • Whitehorn PR, O’Connor S, Wackers FL, Goulson D (2012) Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336:351–352. doi:10.1126/science.1215025

    Article  CAS  PubMed  Google Scholar 

  • Willis KJ, McElwain JC (2014) The evolution of plants, 2nd edn. Oxford University Press, Oxford, 398p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bradshaw, J.E. (2016). Scientific Breeding in the Twentieth Century and Future Goals. In: Plant Breeding: Past, Present and Future. Springer, Cham. https://doi.org/10.1007/978-3-319-23285-0_2

Download citation

Publish with us

Policies and ethics