Skip to main content

Climate Change and Resistance to Pests and Diseases

  • Chapter
Book cover Plant Breeding: Past, Present and Future
  • 2586 Accesses

Abstract

Inbuilt resistances to pests and diseases remain desirable breeding goals, although particular priorities may change with climate change because pathogens and pests have specific temperature and moisture requirements for their population growth. Prerequisites for successful breeding are a source of potentially durable resistance, a reliable screen for resistance using the most appropriate isolate(s) or strain(s) of the parasite and an understanding of the inheritance of resistance. Examples of all these points are provided from potatoes. The use of qualitative oligogenic resistance is explored through an updated gene-for-gene concept of interaction between pathogen effector (Avr) genes and host resistance (R) genes. The existence and value of broad-spectrum quantitative resistance is also considered. The theory and practice of use of disease progress curves to measure resistance is explained. Other examples considered of relevance to breeding for durable resistance are slow-rusting wheats, Mlo resistance to powdery mildew of barley and broad-spectrum bacterial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrivon D, Pellé R, Ellissèche D (2006) Assessing resistance types and levels to epidemic diseases from the analysis of disease progress curves: principles and application to potato late blight. Am J Potato Res 83:455–461

    Article  Google Scholar 

  • Bernoux M, Ve T, Williams S, Warren C, Hatters D, Valkov E, Zhang X, Ellis JG, Kobe B, Dodds PN (2011) Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host Microbe 9:200–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biffen RH (1905) Mendel’s laws of inheritance and wheat breeding. J Agric Sci 1:4–48

    Article  Google Scholar 

  • Biffen RH (1912) Studies in inheritance in disease resistance II. J Agric Sci 4:421–429

    Article  Google Scholar 

  • Black W, Mastenbroek C, Mills WR, Peterson LC (1953) A proposal for an international nomenclature of races of Phytophthora infestans and of genes controlling immunity in Solanum demissum derivatives. Euphytica 2:173–179

    Article  Google Scholar 

  • Bradshaw JE (2007) Breeding potato as a major staple crop. In: Kang MS, Priyadarshan PM (eds) Breeding major food staples. Blackwell, Oxford, pp 277–332

    Chapter  Google Scholar 

  • Bradshaw JE (2009a) Potato breeding at the Scottish Plant Breeding Station and the Scottish Crop Research Institute: 1920–2008. Potato Res 52:141–172

    Article  Google Scholar 

  • Bradshaw JE (2009c) Breeding for field resistance to late blight of potato at SCRI. Acta Hortic 834:87–100

    Article  Google Scholar 

  • Bradshaw JE, Bonierbale M (2010) Potatoes. In: Bradshaw JE (ed) Root and tuber crops, vol 7, Handbook of plant breeding. Springer, New York, pp 1–52

    Chapter  Google Scholar 

  • Bradshaw JE, Lees AK, Stewart HE (2000) How to breed potatoes for resistance to fungal and bacterial diseases. Plant Breed Seed Sci 44:3–20

    Google Scholar 

  • Bradshaw JE, Pande B, Bryan GJ, Hackett CA, McLaren K, Stewart HE, Waugh R (2004) Interval mapping of quantitative trait loci for resistance to late blight [Phytophthora infestans (Mont.) de Bary], height and maturity in a tetraploid population of potato (Solanum tuberosum subsp. tuberosum). Genetics 168:983–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byarugaba AA, Prossy N, Kashaija IN (2013) Identification of potato clones of population B3C2 with durable field resistance to late blight (Phytophthora infestans) and high yields in Uganda. Afr J Agric Res 8:3055–3059. doi:10.5897/AJAR2013.6917

    Google Scholar 

  • Cooke DEL, Lees AK, Shaw DS, Taylor MC, Prentice MWC, Bradshaw NJ, Bain RA (2008) The status of GB blight populations and the threat of oospores. In: Proceedings Crop Protection in Northern Britain 2008, Dundee, pp 217–222

    Google Scholar 

  • Cruickshank G, Stewart HE, Wastie RL (1982) An illustrated assessment key for foliage blight of potatoes. Potato Res 25:213–214

    Article  Google Scholar 

  • Dale MFB, Phillips MS, Ayres RM, Hancock M, Holliday M, Mackay GR, Tones SJ (1988) The assessment of the tolerance of partially resistant potato clones to damage by the potato cyst nematode Globodera pallida at different sites and in different years. Ann Appl Biol 113:79–88

    Article  Google Scholar 

  • Day PR (1974) Genetics of host-parasite interaction. Freeman, San Francisco, 238p

    Google Scholar 

  • Du J, Verzaux E, Chaparro-Garcia A, Bijsterbosch G, Keizer LCP, Zhou J, Liebrand TWH, Xie C, Govers F, Robatzek S, van der Vossen EAG, Jacobsen E, Visser RGF, Kamoun S, Vleeshouwers VGAA (2015) Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nature Plants 1: Article number: 15034, doi:10.1038/nplants.2015.34  Ellis JG, Lawrence GJ, Luck JE, Dodds PN (1999) Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11:495–506

    Google Scholar 

  • Flor HH (1942) Inheritance of pathogenicity in Melampsora lini. Phytopathology 32:653–659

    Google Scholar 

  • Flor HH, Comstock VE (1971) Development of flax cultivars with multiple rust-conditioning genes. Crop Sci 11:64–66

    Article  Google Scholar 

  • Freialdenhoven A, Peterhansel C, Kurth J, Kreuzaler F, Schulze-Lefert P (1996) Identification of genes required for the function of non-race-specific Mlo resistance to powdery mildew in barley. Plant Cell 8:5–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodwin SB, Drenth A (1997) Origin of the A2 mating type of Phytophthora infestans outside Mexico. Phytopathology 87:992–999

    Article  CAS  PubMed  Google Scholar 

  • Goverse A, Struik PC (2009) Debate on the exploitation of natural plant diversity to create late blight resistance in potato. Potato Res 52:265–271

    Article  Google Scholar 

  • Green RE, Cornell SJ, Scharlemann JPW, Balmford A (2005) Farming and the fate of wild nature. Science 307:550–555

    Article  CAS  PubMed  Google Scholar 

  • Hackett CA, Bradshaw JE, Bryan GJ (2014) QTL mapping in autotetraploids using SNP dosage information. Theor Appl Genet 127:1885–1904. doi:10.1007/s00122-014-2347-2, Epub 2014 Jul 1

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones JDG (2001) Putting knowledge of plant disease resistance genes to work. Curr Opin Plant Biol 4:281–287

    Article  CAS  PubMed  Google Scholar 

  • Jones JDG, Witek K, Verweij W, Jupe F, Cooke D, Dorling S, Tomlinson L, Smoker M, Perkins S, Foster S (2014) Elevating crop disease resistance with cloned genes. Philos Trans R Soc B 369:20130087. doi:10.1098/rstb.2013.0087

    Article  Google Scholar 

  • Jorgensen JH (1992) Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63:141–152

    Article  Google Scholar 

  • Kang MS, Priyadarshan PM (eds) (2007) Breeding major food staples. Blackwell, Oxford, 437p

    Google Scholar 

  • Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, van Esse HP, Smoker M, Rallapalli G, Thomma BPHJ, Staskawicz B, Jones JDG, Zipfel C (2010) Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat Biotechnol 28:365–369. doi:10.1038/nbt.1613

    Article  CAS  PubMed  Google Scholar 

  • Lees AK, Stewart JA, Lynott JS, Carnegie SF, Campbell H, Roberts AMI (2012) The effect of a dominant Phytophthora infestans genotype (13_A2) in Great Britain on host resistance to foliar late blight in commercial potato cultivars. Potato Res 55:125–134. doi:10.1007/s11540-012-9214-9

    Article  Google Scholar 

  • Lv H, Fang Z, Yang L, Zhang Y, Wang Q, Liu Y, Zhuang M, Yang Y, Xie B, Liu B, Liu J, Kang J, Wang X (2014) Mapping and analysis of a novel candidate Fusarium wilt resistance gene FOC1 in Brassica oleracea. BMC Genomics 15:1094. doi:10.1186/1471-2164-15-1094

    Article  PubMed  PubMed Central  Google Scholar 

  • Malcolmson JF (1969) Races of Phytophthora infestans occurring in Great Britain. Trans Br Mycol Soc 53:417–423

    Article  Google Scholar 

  • McGrann GRD, Stavrinides A, Russell J, Corbitt MM, Booth A, Chartrain L, Thomas WTB, Brown JKM (2014) A trade off between mlo resistance to powdery mildew and increased susceptibility of barley to a newly important disease, Ramularia leaf spot. J Exp Bot. doi:10.1093/jxb/ert452

    PubMed  PubMed Central  Google Scholar 

  • Muller KO, Black W (1951) Potato breeding for resistance to blight and virus diseases during the last hundred years. Z Pflanzenzuchtung 31:305–318

    Google Scholar 

  • Mundt CC (2014) Durable resistance: a key to sustainable management of pathogens and pests. Infect Genet Evol 27:446–455. doi:10.1016/j.meegid.2014.01.011, Epub 2014 Jan 31

    Article  PubMed  Google Scholar 

  • Nally DP (2011) Human encumbrances. University of Notre Dame Press, Notre Dame, 348p

    Google Scholar 

  • Newcomb M, Acevedo M, Bockelman HE, Brown-Guedira G, Goates BJ, Jackson EW, Jin Y, Njau P, Rouse MN, Singh D, Wanyera R, Bonman JM (2013) Field resistance to the Ug99 race group of the stem rust pathogen in spring wheat landraces. Plant Dis 97:882–890

    Article  Google Scholar 

  • Orłowska E, Basile A, Kandzia I, Llorente B, Kirk HG, Cvitanich C (2012) Revealing the importance of meristems and roots for the development of hypersensitive responses and full foliar resistance to Phytophthora infestans in the resistant potato cultivar Sarpo Mira. J Exp Bot 63:4765–4779

    Article  PubMed  PubMed Central  Google Scholar 

  • Person CO, Sidhu G (1971) In: Proceedings of a panel on mutation breeding for disease resistance, Vienna, IAEA, pp 31–38

    Google Scholar 

  • Prohens J, Nuez F, Carena MJ (2008) Handbook of plant breeding. Springer, New York

    Google Scholar 

  • Quenouille J, Paulhiac E, Moury B, Palloix A (2014) Quantitative trait loci from the host genetic background modulate the durability of a resistance gene: a rational basis for sustainable resistance breeding in plants. Heredity 112:579–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinstädler A, Müller J, Czembor JH, Piffanelli P, Panstruga R (2010) Novel induced mlo mutant alleles in combination with site-directed mutagenesis reveal functionally important domains in the heptahelical barley Mlo protein. BMC Plant Biol 10:31. doi:10.1186/1471-2229-10-31

    Article  PubMed  PubMed Central  Google Scholar 

  • Rietman H, Bijsterbosch G, Cano LM, Lee HR, Vossen JH, Jacobsen E, Visser RGF, Kamoun S, Vleeshouwers VGAA (2012) Qualitative and quantitative late blight resistance in the potato cultivar Sarpo Mira is determined by the perception of five distinct RXLR effectors. Mol Plant Microbe Interact 25:910–919

    Article  CAS  PubMed  Google Scholar 

  • Shaner G, Finney RE (1977) The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67:1051–1056

    Article  CAS  Google Scholar 

  • Simmonds NW (1991) Genetics of horizontal resistance to diseases of crops. Biol Rev 66:189–241

    Article  Google Scholar 

  • Simmonds NW, Wastie RL (1987) Assessment of horizontal resistance to late blight of potatoes. Ann Appl Biol 111:213–221

    Article  Google Scholar 

  • Singh RP, Trethowan R (2007) Breeding spring bread wheat for irrigated and rainfed production systems of the developing world. (2007). In: Kang MS, Priyadarshan PM (eds) Breeding major food staples. Blackwell, Oxford, pp 109–140

    Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481

    Article  CAS  PubMed  Google Scholar 

  • Soloman-Blackburn RM, Stewart HE, Bradshaw JE (2007) Distinguishing major-gene from field resistance to late blight (Phytophthora infestans) of potato (Solanum tuberosum) and selecting for high levels of field resistance. Theor Appl Genet 115:141–149

    Article  Google Scholar 

  • Stewart HE, Wastie RL (1989) A rapid scoring technique for potato tuber disease assessment. Potato Res 32:353–357

    Article  Google Scholar 

  • Stewart HE, Bradshaw JE, Wastie RL (1994) Correlation between resistance to late blight in foliage and tubers in potato clones from parents of contrasting resistance. Potato Res 37:429–434

    Article  Google Scholar 

  • Stewart HE, Bradshaw JE, Pande B (2003) The effect of the presence of R-genes for resistance to late blight (Phytophthora infestans) of potato (Solanum tuberosum) on the underlying level of field resistance. Plant Pathol 52:193–198

    Article  Google Scholar 

  • Świeżynski KM, Domański L, Zarzycka H, Zimnoch-Guzowska E (2000) The reaction of potato differentials to Phytophthora infestans isolates collected in nature. Plant Breed 119:119–126

    Article  Google Scholar 

  • Tomczynska I, Stefanczyk E, Chmielarz M, Karasiewicz B, Kaminski P, Jones JD, Lees AK, Sliwka J (2014) A locus conferring effective late blight resistance in potato cultivar Sarpo Mira maps to chromosome XI. Theor Appl Genet 127:647–657

    Article  PubMed  PubMed Central  Google Scholar 

  • Trognitz BR, Bonierbale M, Landeo JA, Forbes G, Bradshaw JE, Mackay GR, Waugh R, Huarte MA, Colon L (2001) Improving potato resistance to disease under the global initiative on late blight. In: Cooper HD, Spillane C, Hodgkin T (eds) Broadening the genetic base of crop production. CAB International, Wallingford, pp 385–398

    Chapter  Google Scholar 

  • Van der Plank JE (1968) Disease resistance in plants. Academic, New York, 206p

    Google Scholar 

  • Wastie RL, Caligari PDS, Wale SJ (1988a) Assessing the resistance of potatoes to powdery scab [Spongospora subterranea (Wallr.) Lagerh.]. Potato Res 31:167–171

    Article  Google Scholar 

  • Wastie RL, Caligari PDS, Stewart HE, Mackay GR (1988b) Assessing the resistance to gangrene of progenies of potato (Solanum tuberosum L.) from parents differing in susceptibility. Potato Res 31:355–365

    Article  Google Scholar 

  • White S, Shaw D (2009) The usefulness of late-blight resistant Sárpo cultivars-a case study. Acta Hortic 834:161–166

    Article  Google Scholar 

  • Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B, Sharma R, Lanz C, Martin FN, Kamoun S, Krause J, Thines M, Weigel D, Burbano HA (2013) The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. eLife 2, e00731

    PubMed  PubMed Central  Google Scholar 

  • Zurn JD, Newcomb M, Rouse MN, Jin Y, Chao S, Sthapit J, See DR, Wanyera R, Njau P, Bonman JM, Brueggeman R, Acevedo M (2014) High-density mapping of a resistance gene to Ug99 from the Iranian landrace PI 626573. Mol Breed 34:871–881. doi:10.1007/s11032-014-0081-8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bradshaw, J.E. (2016). Climate Change and Resistance to Pests and Diseases. In: Plant Breeding: Past, Present and Future. Springer, Cham. https://doi.org/10.1007/978-3-319-23285-0_18

Download citation

Publish with us

Policies and ethics