Skip to main content

Hybrid Cultivars from Inbreeding and Crossbreeding

  • Chapter
Plant Breeding: Past, Present and Future

Abstract

The theory of inbreeding and crossbreeding is presented as the genetic basis of hybrid breeding. This is followed by considering the variation among inbred lines and their single cross hybrids and the selection of inbred lines (per se and through testcrosses) to produce the best possible single cross hybrids. The concept of heterotic groups raises the issue of predicting heterosis (for example, from the squared difference in allele frequency) and leads to the use of reciprocal recurrent selection in hybrid breeding. Hybrid breeding practice is explained in detail for maize (Zea mays). Also described is the discovery and use of genetic-cytoplasmic male sterility (CMS) in a three-line system for hybrid seed production. Finally hybrid breeding schemes are presented and discussed for a number of crops in addition to maize: fodder and vegetable crops of Brassica oleracea, onions (Allium cepa), carrots (Daucus carota), rye (Secale cereale) and sugar beet (Beta vulgaris).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amuzu-Aweh EN, Bijma P, Kinghorn BP, Vereijken A, Visscher J, van Arendonk JAM, Bovenhuis H (2013) Prediction of heterosis using genome-wide SNP-marker data: application to egg production traits in white Leghorn crosses. Heredity 111:530–538. doi:10.1038/hdy.2013.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balestre M, Von Pinho RG, Souza JC, Oliveira RL (2009) Potential use of molecular markers for prediction of genotypic values in hybrid maize performance. Genet Mol Res 8:1292–1306

    Article  CAS  PubMed  Google Scholar 

  • Bannerot ML, Louidard Y, Cauderon Y, Tempe J (1974) Transfer of cytoplasmic male sterility from Raphanus sativus to Brassica oleracea. In: Proceedings of Eucarpia Meeting Cruciferae, Dundee, pp 52–54

    Google Scholar 

  • Bauman LF (1981) Review of methods used by breeders to develop superior corn inbreds. Proc Annu Corn Sorghum Ind Res Conf 36:199–208

    Google Scholar 

  • Beckett JB (1971) Classification of male-sterile cytoplasms in maize (Zea mays L.). Crop Sci 11:724–727

    Google Scholar 

  • Bernardo R (1991) Correlation between testcross performance of lines at early and late selfing generations. Theor Appl Genet 82:17–21

    Article  CAS  PubMed  Google Scholar 

  • Betrán FJ (2012) Hybrid breeding in maize. In: Acquaah G (ed) Principles of plant genetics and breeding. Wiley-Blackwell, Chichester, pp 597–601

    Google Scholar 

  • Biancardi E, McGrath JM, Panella LW, Lewellen RT, Stevanato P (2010) Sugar beet. In: Bradshaw JE (ed) Root and tuber crops, vol 7, Handbook of plant breeding. Springer, New York, pp 173–219

    Chapter  Google Scholar 

  • Blakeslee AF, Avery AG (1937) Methods of inducing doubling of chromosomes in plants, by treatment with colchicine. J Hered 28:392–411

    Google Scholar 

  • Bradshaw JE, Mackay GR (1985) Half-sib family selection for yield of digestible organic matter in kale (Brassica oleracea L.). Euphytica 34:201–206

    Article  Google Scholar 

  • Bradshaw JE, Wilson RN (2012) Kale population improvement and cultivar production. Euphytica 184:275–288

    Article  Google Scholar 

  • Bulmer MG (1967) Principles of statistics, 2nd edn. Oliver & Boyd, Edinburgh, 252p

    Google Scholar 

  • Cardi T, Earle ED (1997) Production of new CMS Brassica oleracea by transfer of ‘Anand’ cytoplasm from B. rapa through protoplast fusion. Theor Appl Genet 94:204–212

    Article  Google Scholar 

  • Charlesworth D, Vekemans X, Castric V, Glémin S (2005) Plant self-incompatibility systems: a molecular evolutionary perspective. New Phytol 168:61–69

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Liu YG (2014) Male sterility and fertility restoration in crops. Annu Rev Plant Biol 65:579–606

    Article  CAS  PubMed  Google Scholar 

  • Comstock RE, Robinson HF, Harvey PH (1949) A breeding procedure designed to make maximum use of both general and specific combining ability. Agron J 41:360–367

    Article  Google Scholar 

  • Craig WF (1977) Production of hybrid seed corn. In: Sprague GF (ed) Corn and corn improvement, vol 18, Agronomy., pp 671–719

    Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper & Row, New York, 591p

    Google Scholar 

  • Darrah LL, Zuber MS (1986) 1985 United States farm maize germplasm base and commercial breeding strategies. Crop Sci 26:1109–1113

    Article  Google Scholar 

  • Dixon GR (2007) Vegetable Brassicas and related Crucifers. Crop production science in horticulture, vol 14. CABI, Wallingford, 327p

    Google Scholar 

  • East EM (1908) Inbreeding in corn. In Connecticut Agricultural Experiments Station Report 1907, pp 419–428

    Google Scholar 

  • Eberhart SA, Russell WA, Penny LH (1964) Double cross hybrid prediction in maize when epistasis is present. Crop Sci 4:363–366

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Harlow, 464p

    Google Scholar 

  • Geiger HH, Miedaner T (2009) Rye Breeding. In: Carena MJ (ed.) Cereals. Handbook of Plant Breeding vol. 3, Springer, New York, 157-181 Griffing B (1956) Concept of general and specific combining ability in relation to diallel crossing systems. Aust J Biol Sci 9:463–493

    Google Scholar 

  • Hallauer AR, Carena MJ (2009) Maize breeding. In: Carena MJ (ed) Cereals, vol 3, Handbook of plant breeding. Springer, New York, pp 3–98

    Chapter  Google Scholar 

  • Hallauer AR, Eberhart SA (1970) Reciprocal full-sib selection. Crop Sci 10:315–316

    Article  Google Scholar 

  • Harrington J (2012) Pioneer Hi-Bred, a DuPont business-bringing seed value to the grower. In: Acquaah G (ed) Principles of plant genetics and breeding. Wiley-Blackwell, Chichester, pp 357–360

    Google Scholar 

  • Jagosz B (2011) The relationship between heterosis and genetic distances based on RAPD and AFLP markers in carrot. Plant Breed 130:574–579. doi:10.1111/j.1439 0523.2011.01877.x

    Article  CAS  Google Scholar 

  • Jenkins MT (1934) Methods of estimating the performance of double crosses in corn. J Am Soc Agron 26:199–204

    Article  Google Scholar 

  • Jensen SD, Kuhn WE, McConnell RL (1983) Combining ability in elite U.S. maize germplasm. In: Proc. Annu. Corn Sorghum Ind. Res. Conf. 38: 87–96

    Google Scholar 

  • Jones DF (1918) The effects of inbreeding and crossbreeding upon development. Connecticut Agric Exp Stn Bull 207:5–100

    Google Scholar 

  • Jones JN, Clarke AE (1943) Inheritance of male sterility in the onion and the production of hybrid seed. Proc Amer Soc Hort Sci 43:189–194

    Google Scholar 

  • Jones LP, Compton WA, Gardner CO (1971) Comparison of full and half-sib reciprocal recurrent selection. Theor Appl Genet 41:36–39

    CAS  PubMed  Google Scholar 

  • KamiÅ„ski P, Dyki B, StÄ™powska AA (2012) Improvement of cauliflower male sterile lines with Brassica nigra cytoplasm, phenotypic expression and possibility of practical application. J Agric Sci 4:190–200

    Google Scholar 

  • Melgar S, Havey MJ (2010) The dominant Ms allele in onion shows reduced penetrance. J Am Soc Hort Sci 135:49–52

    Google Scholar 

  • Myers JR, McKenzie L, Voorrips RE (2012) Brassicas: breeding cole crops for organic agriculture. In: Lammerts van Bueren ET, Myers JR (eds) Organic crop breeding. Wiley, Chichester, pp 251–262

    Google Scholar 

  • Ogura H (1968) Studies on the new male sterility in Japanese radish, with special references to the utilization of this sterility towards the practical raising of hybrid seeds. Mem Fac Agric Kagoshima Univ 6: 39-78 Owen FV (1945) Cytoplasmically inherited male-sterility in sugar beets. J Agric Res 71:423–440

    Google Scholar 

  • Parisseaux B, Bernardo R (2004) In silico mapping of quantitative trait loci in maize. Theor Appl Genet 109:508–514

    Article  CAS  PubMed  Google Scholar 

  • Pearson OH (1972) Cytoplasmically inherited male sterile characters and flavor components from the species Brassica nigra (L) Koch × B. oleracea L. J Am Soc Hort Sci Biotechnol 97:397–402

    Google Scholar 

  • Rawat DS, Anand IJ (1979) Male sterility in Indian mustard. Indian J Genet Plant Breed 39:412–414

    Google Scholar 

  • Rogers JS, Edwardson JR (1952) The utilization of cytoplasmic male sterility inbreds in the production of corn hybrids. Agron J 44:8–12

    Article  Google Scholar 

  • Savitsky VF (1950) Monogerm sugar beets in the United States. Proc ASSBT 6:156–159

    Google Scholar 

  • Shigyo M, Kik C (2008) Onion. In: Prohens J, Nuez F (eds) Vegetables II, vol 2, Handbook of plant breeding. Springer, New York, pp 121–159

    Chapter  Google Scholar 

  • Shull GH (1908) The composition of a field of maize. Am Breeders’ Assoc Rep 4:296–301

    Google Scholar 

  • Shull GH (1909) A pure-line method of corn breeding. Am Breed Assoc Rep 5:51–59

    Google Scholar 

  • Sigareva MA, Earle ED (1997) Direct transfer of a cold-tolerant Ogura male-sterile cytoplasm into cabbage (Brassica oleracea ssp. capitata) via protoplast fusion. Theor Appl Genet 94:213–220

    Article  Google Scholar 

  • Simon PW, Freeman RE, Vieira JV, Boiteux LS, Briard M, Nothnagel T, Michalik B, Kwon Y-S (2008) Carrot. In: Prohens J, Nuez F (eds) Vegetables II, vol 2, Handbook of plant breeding. Springer, New York, pp 327–357

    Chapter  Google Scholar 

  • Skibbe DS, Schnable PS (2005) Male sterility in maize. Maydica 50:367–376

    Google Scholar 

  • Smith DR, Hooker AL, Lim SM, Beckett JB (1971) Disease reaction of thirty sources of cytoplasmic male-sterile corn to Helminthosporium maydis race T. Crop Sci 11:772–773

    Article  Google Scholar 

  • Sofi PA, Rather AG, Wani SA (2007) Genetic and molecular basis of cytoplasmic male sterility in maize. Commun Biometry Crop Sci 2:49–60

    Google Scholar 

  • Tanaka Y, Tsuda M, Yasumoto K, Yamagishi H, Terachi T (2012) A complete mitochondrial genome sequence of Ogura-type male-sterile cytoplasm and its comparative analysis with that of normal cytoplasm in radish (Raphanus sativus L.). BMC Genomics 13:352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatum LA (1971) The southern corn leaf blight epidemic. Science 171:1113–1116

    Article  CAS  PubMed  Google Scholar 

  • Thompson KF (1957) Self-incompatibility in marrow-stem kale, Brassica oleracea var acephala. I. Demonstration of a sporophytic system. J Genet 55:45–60

    Article  Google Scholar 

  • Thompson KF (1964) Triple-cross hybrid kale. Euphytica 13:173–177

    Google Scholar 

  • Thompson KF (1967) Breeding problems in kale (Brassica oleracea) with particular reference to marrow-stem kale. Rep Pl Breed Inst, Cambridge, 1965–66, pp 7–34

    Google Scholar 

  • Thompson KF, Taylor J (1967) The breakdown of self-incompatibility in cultivars of Brassica oleracea. Heredity 21:637–648

    Article  Google Scholar 

  • Troyer AF (2006) Adaptedness and heterosis in corn and mule hybrids. Crop Sci 46:528–543

    Article  Google Scholar 

  • Ullstrup AJ (1972) The impacts of the southern corn leaf blight epidemic of 1970–71. Annu Rev Phytopathology 10:37–50

    Article  Google Scholar 

  • van Heerwaarden J, Hufford MB, Ross-Ibarra J (2012) Historical genomics of North American maize. Proc Natl Acad Sci 109:12420–12425

    Article  PubMed  PubMed Central  Google Scholar 

  • Walters TW, Mutschler MA, Earle ED (1992) Protoplast fusion-derived Ogura male sterile cauliflower with cold tolerance. Plant Cell Rep 10:624–628

    Article  CAS  PubMed  Google Scholar 

  • Watts LE (1970) Productivity of F1 hybrids of botanical varieties of Brassica oleracea L. Euphytica 19:398–404

    Article  Google Scholar 

  • Welch JE, Grimball EL (1947) Male sterility in carrot. Science 106:594

    Article  CAS  PubMed  Google Scholar 

  • Wolyn DJ, Chahal A (1998) Nuclear and cytoplasmic interactions for petaloid male-sterile accessions of wild carrot (Daucus carota L.). J Am Soc Hort Sci 123:849–853

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bradshaw, J.E. (2016). Hybrid Cultivars from Inbreeding and Crossbreeding. In: Plant Breeding: Past, Present and Future. Springer, Cham. https://doi.org/10.1007/978-3-319-23285-0_12

Download citation

Publish with us

Policies and ethics