Skip to main content

Diagnostic Reasoning for Robotics Using Action Languages

  • Conference paper
  • First Online:
Logic Programming and Nonmonotonic Reasoning (LPNMR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9345))

  • 817 Accesses

Abstract

We introduce a novel diagnostic reasoning method for robotic systems with multiple robots, to find the causes of observed discrepancies relevant for plan execution. Our method proposes (i) a systematic modification of the robotic action domain description by utilizing defaults, and (ii) algorithms to compute a smallest set of diagnoses (e.g., broken robots) by means of hypothetical reasoning over the modified formalism. The proposed method is applied over various robotic scenarios in cognitive factories.

Z.G. Saribatur’s work was carried out during her graduate studies at Sabancı University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balduccini, M., Gelfond, M.: Diagnostic reasoning with A-Prolog. Theory Pract. Logic Program. 3(4–5), 425–461 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baral, C., McIlraith, S., Son, T.C.: Formulating diagnostic problem solving using an action language with narratives and sensing. In: Proceedings of KR (2000)

    Google Scholar 

  3. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)

    Article  Google Scholar 

  4. Caldiran, O., Haspalamutgil, K., Ok, A., Palaz, C., Erdem, E., Patoglu, V.: Bridging the gap between high-level reasoning and low-level control. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 342–354. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Casolary, M., Lee, J.: Representing the language of the causal calculator in answer set programming. In: Proceedings of ICLP (Technical Communications) (2011)

    Google Scholar 

  6. Diankov, R.: Automated construction of robotic manipulation programs. Ph.D. thesis, Carnegie Mellon University, Robotics Institute, August 2010

    Google Scholar 

  7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Eiter, T., Erdem, E., Faber, W., Senko, J.: A logic-based approach to finding explanations for discrepancies in optimistic plan execution. Fundamenta Informaticae 79, 25–69 (2007)

    MATH  MathSciNet  Google Scholar 

  9. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-orderreasoning and external evaluations in answer-set programming. In: Proceedings of IJCAI (2005)

    Google Scholar 

  10. Erdem, E., Haspalamutgil, K., Palaz, C., Patoglu, V., Uras, T.: Combining high-level causal reasoning with low-level geometric reasoning and motion planning for robotic manipulation. In: Proceedings of ICRA (2011)

    Google Scholar 

  11. Erdem, E., Haspalamutgil, K., Patoglu, V., Uras, T.: Causality-based planning and diagnostic reasoning for cognitive factories. In: Proceedings of ETFA (2012)

    Google Scholar 

  12. Erdem, E., Patoglu, V., Saribatur, Z.G.: Integrating hybrid diagnostic reasoning in plan execution monitoring for cognitive factories with multiple robots. In: Proceedings of ICRA (2015)

    Google Scholar 

  13. Erdem, E., Patoglu, V., Schüller, P.: A systematic analysis of levels of integration between high-level task planning and low-level feasibility checks. In: Proceedings of RCRA (2014)

    Google Scholar 

  14. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press, New York (2014)

    Book  Google Scholar 

  16. Gelfond, M., Lifschitz, V.: Action languages. ETAI 2, 193–210 (1998)

    MathSciNet  Google Scholar 

  17. Giacomo, G.D., Reiter, R., Soutchanski, M.: Execution monitoring of high-level robot programs. In: Proceedings of KR (1998)

    Google Scholar 

  18. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories. Artif. Intell. 153, 49–104 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Iwan, G.: Explaining what went wrong in dynamic domains. In: Proceedings of CogRob (2000)

    Google Scholar 

  20. de Kleer, J., Williams, B.C.: Diagnosis with behavioral modes. In: Proceedings of IJCAI (1989)

    Google Scholar 

  21. Kleer, J.D., Mackworth, A.K., Reiter, R.: Characterizing diagnoses and systems. Artif. Intell. 56(2), 197–222 (1992)

    Article  MATH  Google Scholar 

  22. Lifschitz, V.: Answer set programming and plan generation. Artif. Intell. 138, 39–54 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lifschitz, V.: What is answer set programming? In: Proceedings of AAAI (2008)

    Google Scholar 

  24. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: Apt, K.R., et al. (eds.) The Logic Programming Paradigm: A 25-Year Perspective, pp. 375–398. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  25. McCain, N.C.: Causality in commonsense reasoning about actions. Ph.D. thesis (1997)

    Google Scholar 

  26. McIlraith, S.A.: Explanatory diagnosis: conjecturing actions to explain observations. In: Proceedings of KR (1998)

    Google Scholar 

  27. Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intell. 25, 241–273 (1999)

    Article  MATH  Google Scholar 

  28. Reiter, R.: A theory of diagnosis from first principles (1987)

    Google Scholar 

  29. Sohrabi, S., Baier, J.A., McIlraith, S.A.: Diagnosis as planning revisited. In: Proceedings of KR (2010)

    Google Scholar 

  30. Thielscher, M.: A theory of dynamic diagnosis. ETAI 2(11) (1997)

    Google Scholar 

  31. Weyhrauch, R.W.: Prolegomena to a theory of formal reasoning. Technical report. Stanford University (1978)

    Google Scholar 

  32. Zaeh, M., Beetz, M., Shea, K., Reinhart, G., Bender, K., Lau, C., Ostgathe, M., Vogl, W., Wiesbeck, M., Engelhard, M., Ertelt, C., Rhr, T., Friedrich, M., Herle, S.: The cognitive factory. In: ElMaraghy, H.A. (ed.) Changeable and Reconfigurable Manufacturing Systems, pp. 355–371. Springer, London (2009)

    Chapter  Google Scholar 

  33. Zhang, S., Sridharan, M., Gelfond, M., Wyatt, J.: Towards an architecture for knowledge representation and reasoning in robotics. In: Beetz, M., Johnston, B., Williams, M.-A. (eds.) ICSR 2014. LNCS, vol. 8755, pp. 400–410. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Acknowledgements

Thanks to anonymous reviewers for useful comments. This work is partially supported by TUBITAK Grants 111E116, 113M422 and 114E491 (ChistEra COACHES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Erdem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Erdem, E., Patoglu, V., Saribatur, Z.G. (2015). Diagnostic Reasoning for Robotics Using Action Languages. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2015. Lecture Notes in Computer Science(), vol 9345. Springer, Cham. https://doi.org/10.1007/978-3-319-23264-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23264-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23263-8

  • Online ISBN: 978-3-319-23264-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics