Skip to main content

Classifying Large Graphs with Differential Privacy

  • Conference paper
  • First Online:
Modeling Decisions for Artificial Intelligence (MDAI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9321))

Abstract

We consider classification of graphs using graph kernels under differential privacy. We develop differentially private mechanisms for two well-known graph kernels, the random walk kernel and the graphlet kernel. We use the Laplace mechanism with restricted sensitivity to release private versions of the feature vector representations of these kernels. Further, we develop a new sampling algorithm for approximate computation of the graphlet kernel on large graphs with guarantees on sample complexity, and show that the method improves both privacy and computation speed. We also observe that the number of samples needed to obtain good accuracy in practice is much lower than the bound. Finally, we perform an extensive empirical evaluation examining the trade-off between privacy and accuracy and show that our private method is able to retain good accuracy in several classification tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.cse.chalmers.se/~frejohk/data/graphdata_aistats2015.zip.

  2. 2.

    http://www.vbi.vt.edu/ndssl.

  3. 3.

    http://snap.stanford.edu/.

References

  1. Blocki, J., Blum, A., Datta, A., Sheffet, O.: The johnson-lindenstrauss transform itself preserves differential privacy. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 410–419 (2012)

    Google Scholar 

  2. Blocki, J., Blum, A., Datta, A., Sheffet, O.: Differentially private data analysis of social networks via restricted sensitivity. In: ITCS, pp. 87–96 (2013)

    Google Scholar 

  3. Borgwardt, K.M., Kriegel, H.-P.: Shortest-path kernels on graphs. In: Proceedings of ICDM, pp. 74–81 (2005)

    Google Scholar 

  4. Dobson, P.D., Doig, A.J.: Distinguishing enzyme structures from non-enzymes without alignments. J. Mol. Biol. 330(4), 771–783 (2003)

    Article  MATH  Google Scholar 

  5. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Theoret. Comput. Sci. 9(3–4), 211–407 (2013)

    MathSciNet  Google Scholar 

  7. Gärtner, T., Flach, P.A., Wrobel, S.: On graph kernels: hardness results and efficient alternatives. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 129–143. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Hermansson, L., Kerola, T., Johansson, F., Jethava, V., Dubhashi, D.: Entity disambiguation in anonymized graphs using graph kernels. In: CIKM 2013, pp. 1037–1046. ACM (2013)

    Google Scholar 

  9. Hubler, C., Kriegel, H.-P., Borgwardt, K., Ghahramani, Z.: Metropolis algorithms for representative subgraph sampling. In: Eighth IEEE International Conference on Data Mining, ICDM 2008, pp. 283–292. IEEE (2008)

    Google Scholar 

  10. Jain, P., Thakurta, A.: Differentially private learning with kernels. In: JMLR Proceedings of ICML 2013, vol. 28, pp. 118–126 (2013). JMLR.org

  11. Jernigan, C., Mistree, B.F.: Gaydar: facebook friendships expose sexual orientation. First Monday 14(10) (2009)

    Google Scholar 

  12. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: Proceedings of the 20th International Conference on Machine Learning (2003)

    Google Scholar 

  13. Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What can we learn privately? In: CoRR (2008)

    Google Scholar 

  14. Kasiviswanathan, S.P., Nissim, K., Raskhodnikova, S., Smith, A.: Analyzing graphs with node differential privacy. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 457–476. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Kriege, N., Mutzel, P.: Subgraph matching kernels for attributed graphs. In: ICML. icml.cc / Omnipress (2012)

    Google Scholar 

  16. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009)

    Article  MathSciNet  Google Scholar 

  17. Li, N., Qardaji, W., Su, D.: On sampling, anonymization, and differential privacy or, k-anonymization meets differential privacy. In: ASIACCS 2012, pp. 32–33. ACM, New York (2012)

    Google Scholar 

  18. McSherry, F., Mironov, I.: Differentially private recommender systems: building privacy into the net. In: IV Elder, J.F., Fogelman-Souli, F., Flach, P.A., Zaki, M. (eds.) KDD, pp. 627–636. ACM (2009)

    Google Scholar 

  19. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: 2013 IEEE Symposium on Security and Privacy, pp. 111–125 (2008)

    Google Scholar 

  20. Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in private data analysis. In: STOC 2007, pp. 75–84. ACM (2007)

    Google Scholar 

  21. Rahman, M., Bhuiyan, M., Hasan, M.A.: Graft: an approximate graphlet counting algorithm for large graph analysis. In: CIKM 2012, pp. 1467–1471. ACM (2012)

    Google Scholar 

  22. Schölkopf, B., Smola, A.J.: Learning With Kernels: Support Vector Machines, Regularization, Optimization, And Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  23. Shervashidze, N.: Scalable graph kernels. Ph.D. thesis, Eberhard Karls Universitt Tbingen (2012)

    Google Scholar 

  24. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)

    MathSciNet  Google Scholar 

  25. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.M.: Efficient graphlet kernels for large graph comparison. In: Proceedings of AISTATS (2009)

    Google Scholar 

  26. Swarup, S., Eubank, S.G., Marathe, M.V.: Computational epidemiology as a challenge domain for multiagent systems. In: AAMAS 2014, pp. 1173–1176, Richland, SC (2014)

    Google Scholar 

  27. Vishwanathan, S., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph kernels. J. Mach. Learn. Res. 11, 1201–1242 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Vishwanathan, S.V.N., Borgwardt, K.M., Schraudolph, N.N.: Fast computation of graph kernels. In: Schkopf, B., Platt, J., Hoffman, T. (eds.) NIPS, pp. 1449–1456. MIT Press (2006)

    Google Scholar 

  29. Woznica, A., Kalousis, A., Hilario, M.: Matching based kernels for labeled graphs. In: ECML/PKDD Workshop on Mining and Learning with Graphs (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredrik D. Johansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Johansson, F.D., Frost, O., Retzner, C., Dubhashi, D. (2015). Classifying Large Graphs with Differential Privacy. In: Torra, V., Narukawa, T. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2015. Lecture Notes in Computer Science(), vol 9321. Springer, Cham. https://doi.org/10.1007/978-3-319-23240-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23240-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23239-3

  • Online ISBN: 978-3-319-23240-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics