On Spatiochromatic Features in Natural Images Statistics

  • Edoardo ProvenziEmail author
  • Julie Delon
  • Yann Gousseau
  • Baptiste Mazin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9280)


In this communication, we show that two simple assumptions on the covariances matrices of color images, namely stationarity and commutativity, can explain the observed shape of decorrelated spatiochromatic elements (bases obtained by PCA) of natural color images. The validity of these assumptions is tested on a large database of RAW images. Our experiments also show that the spatiochromatic covariance decays exponentially with the spatial distance between pairs of pixels and not as a power law as it is commonly assumed.


Natural Image Kronecker Product Fourier Basis Circulant Matrice Semilogarithmic Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Berman, A., Plemmons, R.: Nonnegative Matrices in the Mathematical Sciences. SIAM (1987)Google Scholar
  2. 2.
    Buchsbaum, G., Gottschalk, A.: Trichromacy, opponent colours coding and optimum colour information transmission in the retina. Proc. Royal Society of London B 220, 89–113 (1983)CrossRefGoogle Scholar
  3. 3.
    Field, D.: Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. 4(12), 2379–2394 (1987)CrossRefGoogle Scholar
  4. 4.
    Frazier, M.W.: Introduction to wavelets through linear algebra. Springer (2001)Google Scholar
  5. 5.
    Goldstein, B.: Sensation and Perception, 9th edn. Cengage Learning (2013)Google Scholar
  6. 6.
    Gray, R.: Toeplitz and Circulant Matrices: A review. Now Publishers Inc. (2006)Google Scholar
  7. 7.
    von Kries, J.: Chromatic adaptation. Festschrift der Albrecht-Ludwigs-Universität, pp. 145–158 (1902)Google Scholar
  8. 8.
    Párraga, C., Troscianko, T., Tolhurst, D.: Spatiochromatic properties of natural images and human vision. Current Biology 6(12), 483–487 (2002)CrossRefGoogle Scholar
  9. 9.
    Provenzi, E., Delon, J., Gousseau, Y., Mazin, B.: Second order stationarity and spatiochromatic properties of natural images. In: 2014 Tenth International Conference on Signal-Image Technology and Internet-Based Systems (SITIS), November 23–27, Marrakech, pp. 598–605. IEEE (2014)Google Scholar
  10. 10.
    Ruderman, D.: Origin of scaling in natural images. Vision Research 37, 3385–3398 (1996)CrossRefGoogle Scholar
  11. 11.
    Ruderman, D., Bialek, W.: Statistics of natural images: Scaling in the woods. Phys. Rev. Lett. 73, 814–817 (1994)CrossRefGoogle Scholar
  12. 12.
    Ruderman, D., Cronin, T., Chiao, C.: Statistics of cone responses to natural images: implications for visual coding. J. Opt. Soc. Am. A 15(8), 2036–2045 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Edoardo Provenzi
    • 1
    Email author
  • Julie Delon
    • 1
  • Yann Gousseau
    • 2
  • Baptiste Mazin
    • 2
  1. 1.Sorbonne Paris Cité, Laboratoire MAP5, UMR CNRS 8145Université Paris DescartesParisFrance
  2. 2.Télécom ParisTech, LTCI, CNRSParisFrance

Personalised recommendations