Analysis of HOG Suitability for Facial Traits Description in FER Problems

  • Marco Del CocoEmail author
  • Pierluigi Carcagnì
  • Giuseppe Palestra
  • Marco Leo
  • Cosimo Distante
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9280)


Automatic Facial Expression Recognition is a topic of high interest especially due to the growing diffusion of assistive computing applications, as Human Robot Interaction, where a robust awareness of the people emotion is a key point. This paper proposes a novel automatic pipeline for facial expression recognition based on the analysis of the gradients distribution, on a single image, in order to characterize the face deformation in different expressions. Firstly, an accurate investigation of optimal HOG parameters has been done. Successively, a wide experimental session has been performed demonstrating the higher detection rate with respect to other State-of-the-Art methods. Moreover, an on-line testing session has been added in order to prove the robustness of our approach in real environments.


Facial expression recognition HOG SVM 


  1. 1.
    Castrillón, M., Déniz, O., Guerra, C., Hernández, M.: Encara2: Real-time detection of multiple faces at different resolutions in video streams. Journal of Visual Communication and Image Representation 18(2), 130–140 (2007)CrossRefGoogle Scholar
  2. 2.
    Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2(3), 27 (2011)Google Scholar
  3. 3.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893 (2005)Google Scholar
  4. 4.
    Dornaika, F., Lazkano, E., Sierra, B.: Improving dynamic facial expression recognition with feature subset selection. Pattern Recognition Letters 32(5), 740–748 (2011)CrossRefGoogle Scholar
  5. 5.
    Farinella, G.M., Farioli, G., Battiato, S., Leonardi, S., Gallo, G.: Face re-identification for digital signage applications. In: Distante, C., Battiato, S., Cavallaro, A. (eds.) VAAM 2014. LNCS, vol. 8811, pp. 40–52. Springer, Heidelberg (2014) Google Scholar
  6. 6.
    Gritti, T., Shan, C., Jeanne, V., Braspenning, R.: Local features based facial expression recognition with face registration errors. In: 8th IEEE International Conference on Automatic Face Gesture Recognition, FG 2008, pp. 1–8 (2008)Google Scholar
  7. 7.
    Happy, S., Routray, A.: Automatic facial expression recognition using features of salient facial patches. IEEE Transactions on Affective Computing PP(99), 1–1 (2015)CrossRefGoogle Scholar
  8. 8.
    Izard, C.: The face of emotion. Century psychology series. Appleton-Century-Crofts (1971)Google Scholar
  9. 9.
    Khan, R.A., Meyer, A., Konik, H., Bouakaz, S.: Framework for reliable, real-time facial expression recognition for low resolution images. Pattern Recognition Letters 34(10), 1159–1168 (2013)CrossRefGoogle Scholar
  10. 10.
    Knerr, S., Personnaz, L., Dreyfus, G.: Single-layer learning revisited: a stepwise procedure for building and training a neural network. Neurocomputing 68, 41–50 (1990)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  12. 12.
    Lucey, P., Cohn, J., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended cohn-kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression. In: Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 94–101 (2010)Google Scholar
  13. 13.
    Martiriggiano, T., Leo, M., D’Orazio, T., Distante, A.: Face recognition by kernel independent component analysis. In: Ali, M., Esposito, F. (eds.) IEA/AIE 2005. LNCS (LNAI), vol. 3533, pp. 55–58. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  14. 14.
    Poursaberi, A., Noubari, H., Gavrilova, M., Yanushkevich, S.: Gauss–laguerrewavelet textural feature fusion with geometrical information for facial expression identification. EURASIP Journal on Image and Video Processing 2012(1), 17 (2012)CrossRefGoogle Scholar
  15. 15.
    Rivera, R., Castillo, R., Chae, O.: Local directional number pattern for face analysis: Face and expression recognition. IEEE Transactions on Image Processing 22(5), 1740–1752 (2013)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Uddin, M., Lee, J., Kim, T.S.: An enhanced independent component-based human facial expression recognition from video. IEEE Transactions on Consumer Electronics 55(4), 2216–2224 (2009)CrossRefGoogle Scholar
  17. 17.
    Uçar, A., Demir, Y., Güzeliş, C.: A new facial expression recognition based on curvelet transform and online sequential extreme learning machine initialized with spherical clustering.Neural Computing and Applications, 1–12 (2014)Google Scholar
  18. 18.
    Viola, P., Jones, M.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  19. 19.
    Zhang, L., Tjondronegoro, D.: Facial expression recognition using facial movement features. IEEE Transactions on Affective Computing 2(4), 219–229 (2011)CrossRefGoogle Scholar
  20. 20.
    Zhao, X., Zhang, S.: Facial expression recognition based on local binary patterns and kernel discriminant isomap. Sensors 11(10), 9573–9588 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marco Del Coco
    • 1
    Email author
  • Pierluigi Carcagnì
    • 1
  • Giuseppe Palestra
    • 2
  • Marco Leo
    • 1
  • Cosimo Distante
    • 1
  1. 1.National Research Council - National Institute of OpticsArnesanoItaly
  2. 2.Department of Computer ScienceUniversity of BariBariItaly

Personalised recommendations