Logo Recognition Using CNN Features

  • Simone Bianco
  • Marco Buzzelli
  • Davide MazziniEmail author
  • Raimondo Schettini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9280)


In this paper we propose a method for logo recognition based on Convolutional Neural Networks, instead of the commonly used keypoint-based approaches. The method involves the selection of candidate subwindows using an unsupervised segmentation algorithm, and the SVM-based classification of such candidate regions using features computed by a CNN. For training the neural network we augment the training set with artificial transformations, while for classification we exploit a query expansion strategy to increase the recall rate. Experiments were performed on a publicly-available dataset that was also corrupted in order to investigate the robustness of the proposed method with respect to blur, noise and lossy compression.


Convolutional Neural Network Query Expansion Lossy Compression Logo Image Logo Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Romberg, S., Lienhart, R.: Bundle min-hashing for logo recognition. In: Proceedings of the 3rd ACM conference on International conference on multimedia retrieval, pp. 113–120. ACM (2013)Google Scholar
  2. 2.
    Bianco, S., Schettini, R., Mazzini, D., Pau, D.P.: Quantitative review of local descriptors for visual search. In: IEEE Third International Conference on Consumer Electronics Berlin (ICCE-Berlin), ICCEBerlin 2013, pp. 98–102. IEEE (2013)Google Scholar
  3. 3.
    Bianco, S., Schettini, R., Mazzini, D., Pau, D.P.: Local detectors and compact descriptors: a quantitative comparison. Digital Signal Processing (2015) (accepted)Google Scholar
  4. 4.
    Fukushima, K.: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 36(4), 193–202 (1980)CrossRefzbMATHGoogle Scholar
  5. 5.
    Abdel-Hamid, O., Mohamed, A.-R., Jiang, H., Deng, L., Penn, G., Yu, D.: Convolutional neural networks for speech recognition. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP) 22(10), 1533–1545 (2014)CrossRefGoogle Scholar
  6. 6.
    Foggia, P., Saggese, A., Strisciuglio, N., Vento, M.: Exploiting the deep learning paradigm for recognizing human actions. In: 2014 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 93–98. IEEE (2014)Google Scholar
  7. 7.
    Pan, C., Yan, Z., Xu, X., Sun, M., Shao, J., Wu, D.: Vehicle logo recognition based on deep learning architecture in video surveillance for intelligent traffic system (2013)Google Scholar
  8. 8.
    van de Sande, K.E.A., Uijlings, J.R.R., Gevers, T., Smeulders, A.W.M.: Segmentation as selective search for object recognition. In: IEEE International Conference on Computer Vision (2011)Google Scholar
  9. 9.
    Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective search for object recognition. International Journal of Computer Vision 104(2), 154–171 (2013)CrossRefGoogle Scholar
  10. 10.
    Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580–587. IEEE (2014)Google Scholar
  11. 11.
    Romberg, S., Pueyo, L.G., Lienhart, R., Van Zwol, R.: Scalable logo recognition in real-world images. In: Proceedings of the 1st ACM International Conference on Multimedia Retrieval, p. 25. ACM (2011)Google Scholar
  12. 12.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. International Journal of Computer Vision 59(2), 167–181 (2004)CrossRefGoogle Scholar
  13. 13.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the ACM International Conference on Multimedia, pp. 675–678. ACM (2014)Google Scholar
  14. 14.
    Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: Cnn features off-the-shelf: An astounding baseline for recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2014Google Scholar
  15. 15.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  16. 16.
    Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)zbMATHGoogle Scholar
  17. 17.
    Paulin, M., Revaud, J., Harchaoui, Z., Perronnin, F., Schmid, C.: Transformation pursuit for image classification. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3646–3653. IEEE (2014)Google Scholar
  18. 18.
    Hosang, J., Benenson, R., Dollár, P., Schiele, B.: What makes for effective detection proposals? (2015). arXiv preprint arXiv:1502.05082
  19. 19.
    Revaud, J., Douze, M., Schmid, C.: Correlation-based burstiness for logo retrieval. In: Proceedings of the 20th ACM International Conference on Multimedia, pp. 965–968. ACM (2012)Google Scholar
  20. 20.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I-511. IEEE (2001)Google Scholar
  21. 21.
    Bianco, S., Bruna, A., Naccari, F., Schettini, R.: Color space transformations for digital photography exploiting information about the illuminant estimation process. Journal of the Optical Society of America A 29(3), 374–384 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Simone Bianco
    • 1
  • Marco Buzzelli
    • 1
  • Davide Mazzini
    • 1
    Email author
  • Raimondo Schettini
    • 1
  1. 1.DISCo (Dipartimento di Informatica, Sistemistica E Comunicazione)Universitàdegli Studi di Milano-BicoccaMilanoItaly

Personalised recommendations