Advertisement

Level-by-Level Adaptive Disparity Compensated Prediction in Wavelet Domain for Stereo Image Coding

  • Shigao LiEmail author
  • Liming Jia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9280)

Abstract

Disparity compensation prediction and transform coding are incorporated into a hybrid coding to reduce the bit-rate of multi-view images. However, aliasing and inaccurate displacement impair the performance of disparity compensation, especially in wavelet domain. In this paper, we propose a level-by-level adaptive disparity compensated prediction scheme for scalable stereo image coding. To get spatial scalable feature, wavelet transform is first applied to the target image of a stereo image pair. A separable 2-D filter applied to the reference image is optimized for each resolution layer by minimizing the energy of the prediction high-bands of the target image. To form a multi-resolution representation, similar processes are then applied to the low-band image pairs generated by the prior resolution layer iteratively. Experimental results show that the proposed scheme can provide significant coding gain compared to other scalable coding scheme.

Keywords

Disparity compensation Image compression Stereo image coding Wavelet image coding 

References

  1. 1.
    Kaaniche, M., et al.: Vector Lifting Schemes for Stereo Image Coding. IEEE Trans. Image Process 18(11), 2463–2475 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Perkins, M.G.: Data Compression of Stereopairs. IEEE Trans. Communications 40(4), 684–696 (1992)CrossRefGoogle Scholar
  3. 3.
    Moellenhoff, M.S., Maier, M.W.: Transform coding of stereo image residuals. IEEE Trans. Image Processing 7(6), 804–812 (1998)CrossRefGoogle Scholar
  4. 4.
    Jiang, Q., Lee, J.J., Hayes, M.H.: A wavelet based stereo image coding algorithm. In: International Conference on Acoustics, speech, and signal processing, Phoenix, pp. 684–696. Arizona State University, Arizona (1999)Google Scholar
  5. 5.
    Boulgouris, N.V., Strintzis, M.G.: A Family of Wavelet-Based Stereo Image Coders. IEEE Trans. Circuits Syst. Video Technol. 12(10), 898–904 (2002)CrossRefGoogle Scholar
  6. 6.
    Edirisinghe, E.A., Nayan, M.Y., Bez, H.E.: A wavelet implementation of the pioneering block-based disparity compensated predictive coding algorithm for stereo image pair compression. Signal Processing: Image Communication 19, 37–46 (2004)Google Scholar
  7. 7.
    Sweldens, W.: The lifting scheme: A construction of second generation wavelets. SIAM J. Math. Anal. 29(2), 511–546 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. J. Fourier Anal. Appl. 4(3), 247–269 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Taubman, D.S.: High performance scalable image compression with EBCOT. IEEE Trans. Image Proc. 9, 1158–1170 (2000)CrossRefGoogle Scholar
  10. 10.
    Andreopoulosa, Y., Munteanu, A.: In-band motion compensated temporal filtering. Signal Processing: Image Communication 19, 653–673 (2004)Google Scholar
  11. 11.
    Anantrasirichai, A., Canagarajah, C.N.: In-Band Disparity Compensation for Multiview Image Compression and View Synthesis. IEEE Transactions On Circuits And Systems For Video Technology 20(4), 473–484 (2010)CrossRefGoogle Scholar
  12. 12.
    Xiong, R., Xu, J., Wu, F., Li, S.: In-scale motion aligned temporal filtering. In: IEEE International Symposium on Circuits and Systems, pp. 3017–3020 (2007)Google Scholar
  13. 13.
    Ye, Y., Motta, G.: Enhanced Adaptive Interpolation Filters for Video Coding. Data Compression Conference, Snowbird, UT, USA, pp. 24–26 (2010)Google Scholar
  14. 14.
    Vatis, Y., Ostermann, J.: Adaptive Interpolation Filter for H.264/AVC. IEEE Transactions On Circuits And Systems For Video Technology 19(2), 179–187 (2009)CrossRefGoogle Scholar
  15. 15.
    Yoo, Y.J., Seo, C.W., Han, J.K.: Enhanced Adaptive Loop Filter for Motion Compensated Frame. IEEE Transactions On Image Processing 20(8), 2177–2188 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Xiong, R., Xu, J., Wu, F., Li, S.: Studies on spatial scalable frameworks for motion aligned 3D wavelet video coding. In: VCIP 2005, Beijing, vol. 5960, pp. 189–200 (2005)Google Scholar
  17. 17.
    Park, H.W., Kim, H.S.: Motion estimation using lowband-shift method for wavelet-based moving picture coding. IEEE Trans. Image Process. 9(4), 577–587 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Mathematic & Computer ScienceWuhan Polytechnic UniversityWuhanChina

Personalised recommendations