Advertisement

Multi-scale Opening – A New Morphological Operator

  • Subhadip BasuEmail author
  • Eric Hoffman
  • Punam K. Saha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9280)

Abstract

Theoretical properties of multi-scale opening (MSO), a new mathematical morphological operator, are established and its application to separation of conjoined fuzzy objects is presented. The new MSO operator accounts for distinct intensity properties of individual objects inside the assembly of two conjoined fuzzy objects by combining fuzzy distance transform (FDT), a morphologic feature, with fuzzy connectivity, a topologic feature, to iteratively open two objects starting at large scales and progressing toward finer scales. Results of application of the new mathematical morphological operator to separate conjoined arterial structures in mathematically generated phantoms and for segmentation of arteries and veins in a physical cast phantom of a pig lung are presented. Performance of the MSO operator is also evaluated in terms of patients’ pulmonary non-contrast CT data for separating arteries and veins and for complete carotid vascular segmentation for patient’s CTA data set.

Keywords

Fuzzy distance transform Morphology Multi-scale opening 

References

  1. 1.
    Udupa, J.K., Herman, G.T.: 3D imaging in medicine. CRC Press, Boca Raton (1991)Google Scholar
  2. 2.
    Sonka, M., Hlavac, V., Boyle, R.: Image processing, Analysis, and Machine Vision. Thomson Engineering, Toronto (2007)Google Scholar
  3. 3.
    Sonka, M., Fitzpatrick, J.: Handbook of Medical Imaging: Medical image processing and analysis, vol. 2. SPIE, Bellingham (2000)CrossRefGoogle Scholar
  4. 4.
    Bushberg, J.T., Boone, J.M.: The essential physics of medical imaging. Lippincott Williams & Wilkins (2011)Google Scholar
  5. 5.
    Cho, Z.H., Jones, J.P., Singh, M.: Foundations of medical imaging. Wiley, New York (1993)Google Scholar
  6. 6.
    McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: a survey. Med. Image Anal. 1, 91–108 (1996)CrossRefGoogle Scholar
  7. 7.
    Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image segmentation 1. Annu. Rev. Biomed. Eng. 2, 315–337 (2000)CrossRefGoogle Scholar
  8. 8.
    Heimann, T., Meinzer, H.-P.: Statistical shape models for 3D medical image segmentation: A review. Med. Image Anal. 13, 543–563 (2009)CrossRefGoogle Scholar
  9. 9.
    Bezdek, J.C., Hall, L.O., Clarke, L.P.: Review of MR image segmentation techniques using pattern recognition. Med. Phys. 20, 1033 (1993)CrossRefGoogle Scholar
  10. 10.
    Olabarriaga, S.D., Smeulders, A.W.M.: Interaction in the segmentation of medical images: A survey. Med. Image Anal. 5, 127–142 (2001)CrossRefGoogle Scholar
  11. 11.
    Saha, P.K., Liang, G., Elkins, J.M., Coimbra, A., Duong, L.T., Williams, D.S., Sonka, M.: A New Osteophyte Segmentation Algorithm Using the Partial Shape Model and Its Applications to Rabbit Femur Anterior Cruciate Ligament Transection via Micro-CT Imaging. Biomed. Eng. IEEE Trans. 58, 2212–2227 (2011)CrossRefGoogle Scholar
  12. 12.
    Van Bemmel, C.M., Spreeuwers, L.J., Viergever, M.A., Niessen, W.J.: Level-set-based artery-vein separation in blood pool agent CE-MR angiograms. IEEE Trans. Med. Imaging 22, 1224–1234 (2003)CrossRefGoogle Scholar
  13. 13.
    Lei, T., Udupa, J.K., Saha, P.K., Odhner, D.: Artery-vein separation via MRA-an image processing approach. IEEE Trans. Med. Imaging 20, 689–703 (2001)CrossRefGoogle Scholar
  14. 14.
    Buelow, T., Wiemker, R., Blaffert, T., Lorenz, C., Renisch, S.: Automatic extraction of the pulmonary artery tree from multi-slice CT data. Medical Imaging, pp. 730–740. International Society for Optics and Photonics (2005)Google Scholar
  15. 15.
    Yonekura, T., Matsuhiro, M., Saita, S., Kubo, M., Kawata, Y., Niki, N., Nishitani, H., Ohmatsu, H., Kakinuma, R., Moriyama, N.: Classification algorithm of pulmonary vein and artery based on multi-slice CT image. Medical Imaging, p. 65142E–65142E. International Society for Optics and Photonics (2007)Google Scholar
  16. 16.
    Saha, P.K., Wehrli, F.W., Gomberg, B.R.: Fuzzy Distance Transform: Theory, Algorithms, and Applications. Comput. Vis. Image Underst. 86, 171–190 (2002)CrossRefzbMATHGoogle Scholar
  17. 17.
    Rosenfeld, A.: Fuzzy Digital Topology. Inf. Control. 40, 76–87 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Udupa, J.K., Samarasekera, S.: Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation. Graph. Model. Image Process. 58, 246–261 (1996)CrossRefGoogle Scholar
  19. 19.
    Saha, P.K., Udupa, J.K.: Iterative relative fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. In: Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, MMBIA-2000 (Cat. No.PR00737), pp. 28–35. IEEE Comput. Soc.Google Scholar
  20. 20.
    Udupa, J.K., Saha, P.K., Lotufo, R.A.: Relative fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1485–1500 (2002)CrossRefGoogle Scholar
  21. 21.
    Saha, P.K., Chaudhuri, B.B.: 3D Digital Topology under Binary Transformation with Applications. Comput. Vis. Image Underst. 63, 418–429 (1996)CrossRefGoogle Scholar
  22. 22.
    Saha, P.K., Udupa, J.K.: Optimum image thresholding via class uncertainty and region homogeneity (2001). http://www.computer.org/portal/web/csdl/doi?doc=abs/trans/tp/2001/07/i7toc.htm
  23. 23.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man, Cybern. 8, 62–66 (1978)CrossRefGoogle Scholar
  24. 24.
    Kong, T.Y., Rosenfeld, A.: Digital topology: Introduction and survey. Comput. Vis. Graph. Image Process. 48, 357–393 (1989)CrossRefGoogle Scholar
  25. 25.
    Saha, P.K., Chaudhuri, B.B.: Detection of 3-D simple points for topology preserving transformations with application to thinning. Pattern Anal. Mach. Intell. IEEE Trans. 16, 1028–1032 (1994)CrossRefGoogle Scholar
  26. 26.
    Saha, P.K., Wehrli, F.W.: Measurement of trabecular bone thickness in the limited resolution regime of in vivo MRI by fuzzy distance transform. IEEE Trans. Med. Imaging. 23, 53–62 (2004)CrossRefGoogle Scholar
  27. 27.
    Saha, P.K., Udupa, J.K., Odhner, D.: Scale-Based Fuzzy Connected Image Segmentation: Theory, Algorithms, and Validation. Comput. Vis. Image Underst. 77, 145–174 (2000)CrossRefGoogle Scholar
  28. 28.
    Ciesielski, K.C., Udupa, J.K., Saha, P.K., Zhuge, Y.: Iterative Relative Fuzzy Connectedness for Multiple Objects with Multiple Seeds. Comput. Vis. image Underst. CVIU 107, 160–182 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringJadavpur UniversityKolkataIndia
  2. 2.Department of Radiology and the Department of Biomedical EngineeringThe University of IowaIowa CityUSA
  3. 3.Department of Electrical and Computer EngineeringThe University of IowaIowa CityUSA

Personalised recommendations