Combining Hardwaremetry and Biometry for Human Authentication via Smartphones

  • Chiara GaldiEmail author
  • Michele Nappi
  • Jean-Luc Dugelay
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9280)


The role of smartphones in our life is ever-increasing. They are used to store and share sensitive data and to perform security critical operation online e.g. home banking transaction or shopping. This leads to the need for a more secure authentication process via mobile phones. Biometrics could be the solution but biometric authentication systems via mobile devices presented so far still do not provide a good trade-off between ease of use and high security level. In this paper we analyze the combination of sensor recognition (hardwaremetry) and iris recognition (biometry) in order to provide a double check of user’s identity in one shot, i.e. a single photo of the eye captured by the Smartphone, without the need of additional or dedicated sensors. To the best of our knowledge, this is the first attempt to combine these two aspects.


Hardwaremetry Biometry Sensor recognition Iris recognition Mobile device 


  1. 1.
  2. 2.
  3. 3.
    De Marsico, M., Nappi, M., Riccio, D., Wechsler, H.: Mobile Iris Challenge Evaluation - MICHE - I, Biometric iris dataset and protocols. Pattern Recognition Letters (2015). doi: 10.1016/j.patrec.2015.02.009
  4. 4.
    Chen, B., Shen, J., Sun, H.: A fast face recognition system on mobile phone. In: 2012 International Conference on Systems and Informatics (ICSAI), pp. 1783–1786. IEEE (2012)Google Scholar
  5. 5.
    Imaizumi, K., Moshnyaga, V.G.: Network-based face recognition on mobile devices. In: IEEE Third International Conference on Consumer Electronics?? Berlin (ICCE-Berlin), ICCE Berlin 2013, pp. 406–409 (2013)Google Scholar
  6. 6.
    Barra, S., De Marsico, M., Galdi, C., Riccio, D., Wechsler, H.: FAME: face authentication for mobile encounter. In: IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BIOMS), pp. 1–7 (2013)Google Scholar
  7. 7.
    Cho, D.H., Park, K.R., Rhee, D.W., Kim, Y.G., Yang, J.H.: Pupil and iris localization for iris recognition in mobile phones. In: Proceedings of the SNPD, pp. 197–201 (2006)Google Scholar
  8. 8.
    Cho, D.H., Park, K.R., Rhee, D.W.: Real-time iris localization for iris recognition in cellular phone. In: International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, pp. 254–259 (2005)Google Scholar
  9. 9.
  10. 10.
  11. 11.
    Frucci, M., Galdi, C., Nappi, M., Riccio, D., Sanniti di Baja, G.: IDEM: Iris DEtection on Mobile devices. In: 22nd International Conference on Pattern Recognition, ICPR, August 24–28 (2014)Google Scholar
  12. 12.
    Abate, A.F., Frucci, M., Galdi, C., Riccio, D.: BIRD: watershed Based IRis Detection for mobile devices. Pattern Recognition Letters (available online November 14, 2014. doi: 10.1016/j.patrec.2014.10.017
  13. 13.
    Jeong, D.S., Park, H.-A., Park, K.R., Kim, J.H.: Iris recognition in mobile phone based on adaptive gabor filter. In: Zhang, D., Jain, A.K. (eds.) ICB 2005. LNCS, vol. 3832, pp. 457–463. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Park, K.R., Park, H., Kang, B.Y., Lee, E.C., Jeong, D.S.: A study on iris localization and recognition on mobile phone. Eur. J. Adv. Signal Process., 1–12 (2007)Google Scholar
  15. 15.
    Kang, J.S.: Mobile iris recognition systems: an emerging biometric technology. In: International Conference on Computational Science (ICCS) (2010)Google Scholar
  16. 16.
    Barra, S., Casanova, A., Narducci, F., Ricciardi, S.: Ubiquitous iris recognition by means of mobile devices. Pattern Recognition Letters (available online 28 October 2014). doi: 10.1016/j.patrec.2014.10.011
  17. 17.
    Abate, A.F., Nappi, M., Narducci, F., Ricciardi, S.: Fast Iris recognition on smartphone by means of spatial histograms. In: Cantoni, V., Dimov, D., Tistarelli, M. (eds.) BIOMET 2014, LNCS 8897. LNCS, vol. 8897, pp. 66–74. Springer, Heidelberg (2014)Google Scholar
  18. 18.
    De Marsico, M., Galdi, C., Nappi, M., Riccio, D.: FIRME: face and iris recognition for mobile engagement. Image Vis. Comput. 32(12), 1161–1172 (2014)CrossRefGoogle Scholar
  19. 19.
    Li, C.-T.: Source camera identification using enhanced sensor pattern noise. IEEE Transactions on Information Forensics and Security 5(2), 280–287 (2010)CrossRefGoogle Scholar
  20. 20.
    Lukás, J., Fridrich, J., Goljan, M.: Digital camera identification from sensor pattern noise. IEEE Trans. Inf. Forensics Security 1(2), 205–214 (2006)CrossRefGoogle Scholar
  21. 21.
    Chen, M., Fridrich, J., Goljan, M., Lukás, J.: Determining image origin and integrity using sensor noise. IEEE Trans. Inf. Forensics Security 3(1), 74–90 (2008)CrossRefGoogle Scholar
  22. 22.
    Ko, J.-G., Gil, Y.-H., Yoo, J.-H., Chung, K.-I.: A novel and efficient feature extraction method for iris recognition. ETRI J. 29(3), 399–401 (2007)CrossRefGoogle Scholar
  23. 23.
    Taktak, W., Dugelay, J.-L.: Digital Image Forensics: A Two-Step Approach for Identifying Source and Detecting Forgeries. The Era of Interactive Media, pp. 37–51. Springer, New York (2013)Google Scholar
  24. 24.
    Redi, J.A., Taktak, W., Dugelay, J.-L.: Digital image forensics: a booklet for beginners. Multimedia Tools and Applications 51(1), 133–162 (2011)CrossRefGoogle Scholar
  25. 25.
    Daugman, J.: How iris recognition works. In: 2002 International Conference on Image Processing. Proceedings, vol. 1, pp. I-33–I-36 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.EURECOMSophia AntipolisFrance
  2. 2.Università degli Studi di SalernoFiscianoItaly

Personalised recommendations