Recognition of the Human Fatigue Based on the ICAAM Algorithm

  • Konrad Rodzik
  • Dariusz SawickiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9280)


The international statistics show that a large number of road accidents are caused by driver fatigue. A system that can detect oncoming worker fatigue could help in preventing many accidents. Many researchers focused to measure separately different physiological changes like eye blinking or head movement. Uncomfortable EEG analysis is also discussed in this field. In presented paper, we describe a simple, non-intrusive system for detection of worker fatigue. The system, based on Inverse Compositional Active Appearance Models (ICAAM) method, allows for comprehensive analysis of the face shape and its basic elements.


Fatigue detection Worker fatigue ICAAM Yawning Eyes blinking 


  1. 1.
    Osh in figures: Occupational Safety and Health in the Transport Sector - an Overview, Report of the European Agency for Safety and Health at Work. Publications Office of the European Communities, Luxembourg (2011)Google Scholar
  2. 2.
    Osh in figures: Annex to Report: Occupational Safety and Health in the Road Transport sector: An Overview. National Report: Finland. Report of the European Agency for Safety and Health at Work. Publications Office of the European Communities, Luxembourg (2011)Google Scholar
  3. 3.
    von Jan, T., Karnahl, T., Seifert, K., Hilgenstock, J., Zobel, R.: Don’t sleep and drive – VW’s fatigue detection technology. In: Proc. of 19th International Technical Conference on the Enhanced Safety of Vehicles, Washington, DC, USA (2005). (retrieved March 18, 2015)
  4. 4.
    Bosch Driver Drowsiness Detection. (retrieved March 18, 2015)
  5. 5.
    Devi, M.S., Bajaj, P.R.: Driver fatigue detection based on eye tracking. In: Proc. of ICETET 2008. First International Conference on Emerging Trends in Engineering and Technology, Nagpur, Maharashtra, pp. 649–652 (2008). doi: 10.1109/ICETET.2008.17
  6. 6.
    Friedrichs, F., Yang, B.: Camera-based drowsiness reference for driver state classification under real driving conditions. In: Proc. of 2010 IEEE Intelligent Vehicles Symposium, San Diego USA, pp. 101–106 (2010). doi: 10.1109/IVS.2010.5548039
  7. 7.
    Rahman, A.S.M.M., Azmi, N., Shirmohammadi, S., El Saddik, A.: A novel haptic jacket based alerting scheme in a driver fatigue monitoring system. In: Proc. of 2011 IEEE International Workshop on Haptic Audio Visual Environments and Games (HAVE), Hebei, pp. 112–117 (2011). doi: 10.1109/HAVE.2011.6088406
  8. 8.
    Singh, S., Papanikolopoulos, N.P.: Monitoring driver fatigue using facial analysis techniques. In: Proc. of 1999 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems, Tokyo Japan, pp. 314–318 (1999). doi: 10.1109/ITSC.1999.821073
  9. 9.
    Jiao, Y., et al.: Recognizing slow eye movement for driver fatigue detection with machine learning approach. In: Proc. of 2014 International Joint Conference on Neural Networks (IJCNN), Beijing China, pp. 4035–4041 (2014). doi: 10.1109/IJCNN.2014.6889615
  10. 10.
    Liu, W., Sun, H., Shen, W.: Driver fatigue detection through pupil detection and yawning analysis. In: Proc. of 2010 International Conference on Bioinformatics and Biomedical Technology (ICBBT), Chengdu China, pp. 404–407 (2010). doi: 10.1109/ICBBT.2010.5478931
  11. 11.
    Branzan Albu, A., Widsten, B., Wang, T., Lan, J., Mah, J.: A computer vision-based system for real-time detection of sleep onset in fatigued drivers. In: Proceedings of 2008 IEEE Intelligent Vehicles Symposium, Eindhoven, The Netherlands, pp. 25–30 (2008)Google Scholar
  12. 12.
    Ji, Q., Zhu, Z., Lan, P.: Real-Time Nonintrusive Monitoring and Prediction of Driver Fatigue. IEEE Transactions on Vehicular Technology 53(4), 1052–1068 (2004). doi: 10.1109/TVT.2004.830974 CrossRefGoogle Scholar
  13. 13.
    Papadelis, C., Kourtidou-Papadeli, C., Bamidis, P.D., Chouvarda, I.: Indicators of sleepiness in an ambulatory EEG study of night driving. In: Proc. of the 28th IEEE EMBS Annual International Conference, New York, USA, pp. 6201–6204 (2006)Google Scholar
  14. 14.
    Michail, E., Kokonozi, A., Chouvarda, I., Maglaveras, N.: EEG and HRV Markers of Sleepiness and Loss of Control During Car Driving. In: Proc. of EMBS 2008. 30th IEEE Annual International Conference on Engineering in Medicine and Biology Society, Vancouver, Canada, pp. 2566–2569 (2008). doi: 10.1109/IEMBS.2008.4649724
  15. 15.
    Borghini, G., et al.: Assessment of mental fatigue during car driving by using high resolution EEG activity and neurophysiologic indices. In: Proc. of 2012 IEEE Annual International Conference on Engineering in Medicine and Biology Society (EMBC), San Diego USA, pp. 6442–6445 (2012). doi: 10.1109/EMBC.2012.6347469
  16. 16.
    Wang, Q., Yang, J., Ren, M., Zheng, Y.: Driver fatigue detection: a survey. In: Proc. of WCICA 2006. The Sixth World Congress on Intelligent Control and Automation, Dalian, vol. 2, pp. 8587–8591 (2006). doi: 10.1109/WCICA.2006.1713656
  17. 17.
    Coetzer, R.C., Hancke, G.P.: Driver fatigue detection : a survey. In: Proc. of AFRICON 2009 Nairobi, Kenya, pp. 1–6 (2009). doi: 10.1109/AFRCON.2009.5308101
  18. 18.
    Operator Fatigue - Detection Technology Review. CATERPILAR report (2008). (retrieved March 18, 2015)
  19. 19.
    National Sleep Foundation. (retrieved March 18, 2015)
  20. 20.
    Yang, J.H., et al.: Detection of Driver Fatigue Caused by Sleep Deprivation. IEEE Trans. on Man and Cybernetics, Part A: Systems. Systems and Humans 39(4), 694–705 (2009). doi: 10.1109/TSMCA.2009.2018634 CrossRefGoogle Scholar
  21. 21.
    Cootes, T.F.: An Introduction to active shape models. apears as a chapter 7 (model-based methods in analysis of biomedical images). In: Baldosk, R., Graham, J. (ed) Image Processing and Analysis. Oxford University Press, pp. 223–248 (2000). (retrieved March 18, 2015)
  22. 22.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active Shape Models - Their Training and Application. Computer Vision and Image Understanding 61, 38–59 (1995)CrossRefGoogle Scholar
  23. 23.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active Appearance Models. IEEE Trans. on Pattern Analysis and Machine Intelligence 23(6), 681–685 (2001). doi: 10.1109/34.927467 CrossRefGoogle Scholar
  24. 24.
    Cootes, T.F., Taylor, C.J.: Statistical models of appearance for medical image analysis and computer vision. In: Proc. SPIE 4322, Medical Imaging 2001: Image Processing, vol. 236 (2001). doi: 10.1117/12.431093 (retrieved March 18, 2015)
  25. 25.
    Matthews, I., Baker, S.: Active Appearance Models Revisited. Intern. Journal of Computer Vision 60(2), 135–164 (2004). doi: 10.1023/B:VISI.0000029666.37597.d3 CrossRefGoogle Scholar
  26. 26.
    Stegmann, M.B., Ersbøll, B.K., Larsen, R.: FAME – a Flexible Appearance Modeling Environment. IEEE Trans. on Medical Imaging 22(10), 1319–1331 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Warsaw University of TechnologyWarsawPoland

Personalised recommendations