Advertisement

Detecting and Tracking the Tips of Fluorescently Labeled Mitochondria in U2OS Cells

  • Eero LihavainenEmail author
  • Jarno Mäkelä
  • Johannes N. Spelbrink
  • Andre S. Ribeiro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9280)

Abstract

We present a method for automatically detecting the tips of fluorescently labeled mitochondria. The method is based on a Random Forest classifier, which is trained on small patches extracted from confocal microscope images of U2OS human osteosarcoma cells. We then adopt a particle tracking framework for tracking the detected tips, and quantify the tracking accuracy on simulated data. Finally, from images of U2OS cells, we quantify changes in mitochondrial mobility in response to the disassembly of microtubules via treatment with Nocodazole. The results show that our approach provides efficient tracking of the tips of mitochondria, and that it enables the detection of disease-associated changes in mitochondrial motility.

Keywords

Mitochondria Detection Tracking Image analysis 

References

  1. 1.
    Beraud, N., Pelloux, S., Usson, Y., Kuznetsov, A.V., Ronot, X., Tourneur, Y., Saks, V.: Mitochondrial dynamics in heart cells: very low amplitude high frequency fluctuations in adult cardiomyocytes and flow motion in non beating HL-1 cells. Journal of bioenergetics and biomembranes 41(2), 195–214 (2009)CrossRefGoogle Scholar
  2. 2.
    Chen, H., Chan, D.C.: Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Human Molecular Genetics 18(R2), R169–76 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, H., Detmer, S., Ewald, A.J., Griffin, E.E., Fraser, S.E., Chan, D.C.: Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. The Journal of cell biology 160(2), 189–200 (2003)CrossRefGoogle Scholar
  4. 4.
    Chenouard, N., Smal, I., Chaumont, F.D.: Objective comparison of particle tracking methods. Nature Methods 11(3), 281–289 (2014)CrossRefGoogle Scholar
  5. 5.
    Demchouk, A.O., Gardner, M.K., Odde, D.J.: Microtubule Tip Tracking and Tip Structures at the Nanometer Scale Using Digital Fluorescence Microscopy. Cellular and molecular bioengineering 4(2), 192–204 (2011)CrossRefGoogle Scholar
  6. 6.
    Hadjidemetriou, S., Toomre, D., Duncan, J.: Motion tracking of the outer tips of microtubules. Medical image analysis 12(6), 689–702 (2008)CrossRefGoogle Scholar
  7. 7.
    Hales, K.G.: The machinery of mitochondrial fusion, division, and distribution, and emerging connections to apoptosis. Mitochondrion 4(4), 285–308 (2004)CrossRefGoogle Scholar
  8. 8.
    Jaqaman, K., Loerke, D., Mettlen, M.: Robust single-particle tracking in live-cell time-lapse sequences. Nature methods 5(8), 695–702 (2008)CrossRefGoogle Scholar
  9. 9.
    Lihavainen, E., Mäkelä, J., Spelbrink, J.N., Ribeiro, A.S.: Mytoe: automatic analysis of mitochondrial dynamics. Bioinformatics 28(7), 1050–1 (2012)CrossRefGoogle Scholar
  10. 10.
    Saban, M., Altinok, A., Peck, A., Kenney, C., Feinstein, S., Wilson, L., Rose, K., Manjunath, B.S.: Automated tracking and modeling of microtubule dynamics. In: 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, pp. 1032–1035 (2006)Google Scholar
  11. 11.
    Saunter, C.D., Perng, M.D., Love, G.D., Quinlan, R.A.: Stochastically determined directed movement explains the dominant small-scale mitochondrial movements within non-neuronal tissue culture cells. FEBS letters 583(8), 1267–73 (2009)CrossRefGoogle Scholar
  12. 12.
    Silberberg, Y.R., Pelling, A.E., Yakubov, G.E., Crum, W.R., Hawkes, D.J., Horton, M.A.: Tracking displacements of intracellular organelles in response to nanomechanical forces. In: 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1335–1338, May 2008Google Scholar
  13. 13.
    Smith, M.B., Li, H., Shen, T., Huang, X., Yusuf, E., Vavylonis, D.: Segmentation and tracking of cytoskeletal filaments using open active contours. Cytoskeleton 67(11), 693–705 (2010)CrossRefGoogle Scholar
  14. 14.
    Steinberg, G., Schliwa, M.: Organelle movements in the wild type and wall-less fz; sg; os-1 mutants of Neurospora crassa are mediated by cytoplasmic microtubules 564, 555–564 (1993)Google Scholar
  15. 15.
    Yi, M., Weaver, D., Hajnóczky, G.: Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. The Journal of cell biology 167(4), 661–72 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Eero Lihavainen
    • 1
    Email author
  • Jarno Mäkelä
    • 1
  • Johannes N. Spelbrink
    • 2
  • Andre S. Ribeiro
    • 1
  1. 1.Tampere University of TechnologyTampereFinland
  2. 2.Nijmegen Centre for Mitochondrial DisordersRadboud University Medical CenterNijmegenThe Netherlands

Personalised recommendations