Advertisement

Face Recognition from Robust SIFT Matching

  • Massimiliano Di Mella
  • Francesco IsgròEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9280)

Abstract

This paper presents a face recognition algorithm based on the matching of local features extracted from face images, namely SIFT. Some of the earlier approaches based on SIFT matching are sensitive to registration errors and usually rely on a very good initial alignment and illumination of the faces to be recognised. The method is based on a new image matching strategy between face images, that first establishes correspondences between feature points, and then uses the number of correct correspondences, together with the total number of matches and detected features, to determine the likelihood of the similarity between the face images.

The experimental results, performed on different datasets, demonstrate the effectiveness of the proposed algorithm for automatic face identification. More exhaustive experiments are planned in order to perform a fair comparison with other state of the art methods based on local features.

Keywords

Face recognition Feature matching 

References

  1. 1.
    OpenVIDIA: Parallel GPU computer vision. http://openvidia.sourceforge.net
  2. 2.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis Machine Intelligence 28(12), 2037–2041 (2006)CrossRefGoogle Scholar
  3. 3.
    Aly, M.: Face recognition using sift features. CNS/Bi/EE report 186 (2006)Google Scholar
  4. 4.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008)CrossRefGoogle Scholar
  5. 5.
    Bicego, M., Lagorio, A., Grosso, E., Tistarelli, M.: On the use of sift features for face authentication. In: Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop, pp. 35–41 (2006)Google Scholar
  6. 6.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  7. 7.
    Dreuw, P., Steingrube, P., Hanselmann, H., Ney, H.: SURF-face: face recognition under viewpoint consistency constraints. In: Proceedings of the British Machine Vision Conference, pp. 1–11 (2009)Google Scholar
  8. 8.
    Geng, C., Jiang, X.: Face recognition using SIFT features. In: Proceedings of the International Conference on Image Processing, pp. 3313–3316 (2009)Google Scholar
  9. 9.
    Geng, C., Jiang, X.: Face recognition based on the multi-scale local image structures. Pattern Recognition 44(10), 2565–2575 (2011)CrossRefGoogle Scholar
  10. 10.
    Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intelligence 23(6), 643–660 (2001)CrossRefGoogle Scholar
  11. 11.
    Hartley, R.I., Zisserman, A.: Multiple view geometry. Cambrige University Press (2000)Google Scholar
  12. 12.
    Jafri, R., Arabnia, H.R.: A Survey of Face Recognition Techniques. Journal of Information Processing Systems 5(2), 41–68 (2009)CrossRefGoogle Scholar
  13. 13.
    Kisku, D., Rattani, A., Grosso, E., Tistarelli, M.: Face identification by SIFT-based complete graph topology. CoRR abs/1002.0411 (2010)Google Scholar
  14. 14.
    Križaj, J., Štruc, V., Pavešić, N.: Adaptation of SIFT features for robust face recognition. In: Campilho, A., Kamel, M. (eds.) ICIAR 2010. LNCS, vol. 6111, pp. 394–404. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  15. 15.
    Kumar, N., Berg, A., Belhumeur, P., Nayar, S.: Attribute and simile classifiers for face verification. In: Proceedings of the International Conference on Computer Vision, pp. 365–372 (2009)Google Scholar
  16. 16.
    Kuo, C.H., Lee, J.D.: A two-stage classifier using SVM and RANSAC for face recognition. In: Proceedings/TENCON IEEE Region 10 Annual International Conference, pp. 1–4 (2007)Google Scholar
  17. 17.
    Lalonde, M., Byrns, D., Gagnon, L., Teasdale, N., Laurendeau, D.: Real-time eye blink detection with GPU-based SIFT tracking. In: Proceedings of the Canadian Conference on Computer and Robot Vision, pp. 481–487 (2007)Google Scholar
  18. 18.
    Lenc, L., Král, P.: Novel matching methods for automatic face recognition using SIFT. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.) AIAI 2002. IFIP AICT, vol. 381, pp. 254–263. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  19. 19.
    Liu, C.: Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(5), 725–737 (2006)CrossRefGoogle Scholar
  20. 20.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, pp. 1150–1157 (1999)Google Scholar
  21. 21.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  22. 22.
    Luo, J., Ma, Y., Takikawa, E., Lao, S., Kawade, M., Lu, B.L.: Person-specific SIFT features for face recognition. In: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 2 (2007)Google Scholar
  23. 23.
    Majumdar, A., Ward, R.K.: Discriminative sift features for face recognition. In: Electrical and Computer Engineering, CCECE 2009. Canadian Conference on, pp. 27–30 (2009)Google Scholar
  24. 24.
    Meer, P., Mintz, D., Rosenfeld, A., Kim, D.Y.: Robust regression methods for computer vision: a review. International Journal of Compuer Vision 6(1), 59–70 (1991)CrossRefGoogle Scholar
  25. 25.
    Pham, T., Waillot, N., Lim, J., Chevallet, J.: Latent semantic fusion model for image retrieval and annotation. In: Proceedings of the ACM Conference on Information and Knowledge Management, pp. 439–444 (2007)Google Scholar
  26. 26.
    Se, S., Lowe, D., Little, J.: Vision-based mobile robot localization and mapping using scale-invariant features. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 2051–2058 (2001)Google Scholar
  27. 27.
    Shu, C., Ding, X., Fang, C.: Histogram of the oriented gradient for face recognition. Tsinghua Science and Technology 16(2), 216–224 (2011)CrossRefGoogle Scholar
  28. 28.
    Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1701–1708 (2014)Google Scholar
  29. 29.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Cognitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  30. 30.
    Xiang, C., Fan, X., Lee, T.: Face recognition using recursive Fisher linear discriminant. IEEE Transactions on Image Processing 15(8), 2097–2105 (2006)CrossRefGoogle Scholar
  31. 31.
    Zhao, W., Chellappa, R., Philips, P., Rosenfeld, A.: Face recognition: A literature survey. ACM Computing Survey, 399–458 (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Elettrica E Delle Tecnologie Dell’InformazioneUniversità Degli Studi di Napoli Federico IINapoliItaly

Personalised recommendations