Dominant LBP Considering Pattern Type for Facial Image Representation

  • Alaa SagheerEmail author
  • Shimaa Saad
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9280)


Facial image representation plays an important role in computer vision and image processing applications. This paper introduces a novel feature selection method, dominant LBP considering pattern type (DLBP-CPT), capable to capture, effectively, the most reliable and robust dominant patterns in face images. In contrast to the Dominant LBP (DLBP) approach, we take into account the dominant pattern types information. We find that pattern type represents essential information that should be included, especially, in facial image representation across illumination. We apply the proposed method with the conventional LBP and the angular difference LBP (AD-LBP) operators. It is shown in this paper, that the proposed DLBP-CPT and DAD-LBP-CPT descriptors are more reliable to represent the dominant pattern information in the facial images than either the conventional uniform LBP or other dominant LBP approaches.


Local binary patterns Facial representation Feature selection Face identification 


  1. 1.
    Abate, A.F., Nappi, M., Riccio, D., Sabatino, G.: 2d and 3d face recognition: A survey. Pattern Recognition Letters 28(14), 1885–1906 (2007)CrossRefGoogle Scholar
  2. 2.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  3. 3.
    Delac, K., Grgic, M., Bartlett, M.S.: Recent advances in face recognition. Tech Publication, Crosia (2008)CrossRefGoogle Scholar
  4. 4.
    Guo, Y., Zhao, G., Pietikäinen, M., Xu, Z.: Descriptor learning based on fisher separation criterion for texture classification. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part III. LNCS, vol. 6494, pp. 185–198. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  5. 5.
    Hadid, A., Pietikainen, M., Ahonen, T.: A discriminative feature space for detecting and recognizing faces. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, p. II–797. IEEE (2004)Google Scholar
  6. 6.
    Jain, A.K., Li, S.Z.: Handbook of face recognition, vol. 1. Springer (2005)Google Scholar
  7. 7.
    Jun, B., Kim, D.: Robust face detection using local gradient patterns and evidence accumulation. Pattern Recognition 45(9), 3304–3316 (2012)CrossRefGoogle Scholar
  8. 8.
    Lee, K.C., Ho, J., Kriegman, D.J.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(5), 684–698 (2005)CrossRefGoogle Scholar
  9. 9.
    Liao, S., Law, M.W., Chung, A.C.: Dominant local binary patterns for texture classification. IEEE Transactions on Image Processing 18(5), 1107–1118 (2009)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Liu, L., Zhao, L., Long, Y., Kuang, G., Fieguth, P.: Extended local binary patterns for texture classification. Image and Vision Computing 30(2), 86–99 (2012)CrossRefGoogle Scholar
  11. 11.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognition 29(1), 51–59 (1996)CrossRefGoogle Scholar
  12. 12.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)CrossRefGoogle Scholar
  13. 13.
    Shan, C., Gong, S., McOwan, P.W.: Facial expression recognition based on local binary patterns: A comprehensive study. Image and Vision Computing 27(6), 803–816 (2009)CrossRefGoogle Scholar
  14. 14.
    Sim, T., Baker, S., Bsat, M.: The cmu pose, illumination, and expression (pie) database. In: Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 46–51. IEEE (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer Science, College of Computer Science and Information TechnologyKing Faisal UniversityHofufSaudi Arabia
  2. 2.Center for Artificial Intelligence and Robotics, Faculty of ScienceAswan UniversityAswanEgypt

Personalised recommendations