Improved Human Gait Recognition

  • Imad RidaEmail author
  • Ahmed Bouridane
  • Gian Luca Marcialis
  • Pierluigi Tuveri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9280)


Gait recognition is an emerging biometric technology which aims to identify people purely through the analysis of the way they walk. The technology has attracted interest as a method of identification because of its non-invasiveness, since it does not require the subject’s cooperation. However, "covariates" which include clothing, carrying conditions, and other intra-class variations affect the recognition performances. This paper proposes a feature selection mask which is able to select most relevant discriminative features for human recognition to alleviate the impact of covariates so as to improve the recognition performances. The proposed method has been evaluated using CASIA Gait Database (Dataset B) and the experimental results demonstrate that the proposed technique yields 77.38 % of correct recognition.


Biometrics Gait Model free Feature selection 


  1. 1.
    Yam, C., Nixon, M.S., Carter, J.N.: Automated person recognition by walking and running via model-based approaches. Pattern Recognition 37(5), 1057–1072 (2004)CrossRefGoogle Scholar
  2. 2.
    Niyogi, S.A., Adelson, E.H.: Analyzing and recognizing walking figures in XYT. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1994, pp. 469–474. IEEE (1994)Google Scholar
  3. 3.
    Wang, L., Ning, H., Tan, T., Hu, W.: Fusion of static and dynamic body biometrics for gait recognition. IEEE Transactions on Circuits and Systems for Video Technology 14(2), 149–158 (2004)CrossRefGoogle Scholar
  4. 4.
    Benabdelkader, C., Cutler, R.G., Davis, L.S.: Gait recognition using image self-similarity. EURASIP Journal on Advances in Signal Processing 2004(721765), 572–585 (2004). doi: 10.1155/S1110865704309236 CrossRefGoogle Scholar
  5. 5.
    Collins, R.T., Gross, R., Shi, J.: Silhouette-based human identification from body shape and gait. In: Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 366–371. IEEE (2002)Google Scholar
  6. 6.
    Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(2), 316–322 (2006)CrossRefGoogle Scholar
  7. 7.
    Tao, D., Li, X., Wu, X., Maybank, S.J.: General tensor discriminant analysis and gabor features for gait recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(10), 1700–1715 (2007)CrossRefGoogle Scholar
  8. 8.
    Xu, D., Yan, S., Tao, D., Zhang, L.: Human gait recognition with matrix representation. IEEE Transactions on Circuits and Systems for Video Technology 16(7), 896–903 (2006)CrossRefGoogle Scholar
  9. 9.
    Xu, D., Yan, S., Tao, D., Lin, S., Zhang, H.-J.: Marginal fisher analysis and its variants for human gait recognition and content-based image retrieval. IEEE Transactions on Image Processing 16(11), 2811–2821 (2007)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Zhang, E., Zhao, Y., Xiong, W.: Active energy image plus 2DLPP for gait recognition. Signal Processing 90(7), 2295–2302 (2010)CrossRefzbMATHGoogle Scholar
  11. 11.
    Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: 18th International Conference on Pattern Recognition, ICPR 2006, pp. 441–444. IEEEGoogle Scholar
  12. 12.
    Bashir, K., Xiang, T., Gong, S.: Gait recognition without subject cooperation. Pattern Recognition Letters 31(13), 2052–2060 (2010)CrossRefGoogle Scholar
  13. 13.
    Bashir, K., Xiang, T., Gong, S.: Gait representation using flow fields. In: BMVC, pp. 1–11 (2009)Google Scholar
  14. 14.
    Guan, Y., Wei, X., Li, C.-T., Marcialis, G.L., Roli, F., Tistarelli, M.: Combining gait and face for tackling the elapsed time challenges. In: 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–8. IEEEGoogle Scholar
  15. 15.
    Guan, Y., Li, C.-T., Roli, F.: On reducing the effect of covariate factors in gait recognition: a classifier ensemble method. IEEE Trans. on Pattern Analysis and Machine Intelligence (2014) doi: 10.1109/TPAMI.2014.2366766
  16. 16.
    Foster, J.P., Nixon, M.S., Prgel-Bennett, A.: Automatic gait recognition using area-based metrics. Pattern Recognition Letters 24(14), 2489–2497 (2003)CrossRefGoogle Scholar
  17. 17.
    Zheng, S., Zhang, J., Huang, K., He, R., Tan, T.: Robust view transformation model for gait recognition. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 2073–2076. IEEEGoogle Scholar
  18. 18.
    Huang, P.S., Harris, C.J., Nixon, M.S.: Recognising humans by gait via parametric canonical space. Artificial Intelligence in Engineering 13(4), 359–366 (1999)CrossRefGoogle Scholar
  19. 19.
    Rida, I., Bouridane, A., Al Kork, S., Bremond, F.: Gait recognition based on modified phase only correlation. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2014. LNCS, vol. 8509, pp. 417–424. Springer, Heidelberg (2014) Google Scholar
  20. 20.
    Rida, I.: Al Maadeed, S., Bouridane, A. Gait recognition based on modified phase-only correlation. Signal, Image and Video Processing (2015). doi: 10.1007/s11760-015-0766-4 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Imad Rida
    • 1
    Email author
  • Ahmed Bouridane
    • 2
  • Gian Luca Marcialis
    • 3
  • Pierluigi Tuveri
    • 3
  1. 1.LITIS EA 4108 - INSA de Rouen, Saint Etienne du RouvrayRouenFrance
  2. 2.Department of Computer Science and Digital TechnologiesNorthumbria UniversityNewcastleUK
  3. 3.Department of Electrical and Electronic EngineeringUniversity of CagliariCagliariItaly

Personalised recommendations