Skip to main content

Exploiting GPUs in Solving (Distributed) Constraint Optimization Problems with Dynamic Programming

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9255))

Abstract

This paper proposes the design and implementation of a dynamic programming based algorithm for (distributed) constraint optimization, which exploits modern massively parallel architectures, such as those found in modern Graphical Processing Units (GPUs). The paper studies the proposed algorithm in both centralized and distributed optimization contexts. The experimental analysis, performed on unstructured and structured graphs, shows the advantages of employing GPUs, resulting in enhanced performances and scalability.

This research is partially supported by the National Science Foundation under grant number HRD-1345232. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the sponsoring organizations, agencies, or the U.S. government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdennadher, S., Schlenker, H.: Nurse scheduling using constraint logic programming. In: Proceedings of the Conference on Innovative Applications of Artificial Intelligence (IAAI), pp. 838–843 (1999)

    Google Scholar 

  2. Apt, K.: Principles of constraint programming. Cambridge University Press (2003)

    Google Scholar 

  3. Arbelaez, A., Codognet, P.: A GPU implementation of parallel constraint-based local search. In: Proceedings of the Euromicro International Conference on Parallel, Distributed and network-based Processing (PDP), pp. 648–655 (2014)

    Google Scholar 

  4. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  5. Boyer, V., El Baz, D., Elkihel, M.: Solving knapsack problems on GPU. Computers & Operations Research 39(1), 42–47 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brito, I., Meseguer, P.: Improving DPOP with function filtering. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 141–158 (2010)

    Google Scholar 

  7. Burke, D., Brown, K.: Efficiently handling complex local problems in distributed constraint optimisation. In: Proceedings of the European Conference on Artificial Intelligence (ECAI), pp. 701–702 (2006)

    Google Scholar 

  8. Burke, E.K., De Causmaecker, P., Berghe, G.V., Van Landeghem, H.: The state of the art of nurse rostering. Journal of scheduling 7(6), 441–499 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Campeotto, F., Dovier, A., Fioretto, F., Pontelli, E.: A GPU implementation of large neighborhood search for solving constraint optimization problems. In: Proceedings of the European Conference on Artificial Intelligence (ECAI), pp. 189–194 (2014)

    Google Scholar 

  10. Dechter, R.: Bucket elimination: a unifying framework for probabilistic inference. In: Learning in graphical models, pp. 75–104. Springer (1998)

    Google Scholar 

  11. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers Inc., San Francisco (2003)

    Google Scholar 

  12. Dechter, R., Pearl, J.: Network-based heuristics for constraint-satisfaction problems. Springer (1988)

    Google Scholar 

  13. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.: Decentralised coordination of low-power embedded devices using the Max-Sum algorithm. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 639–646 (2008)

    Google Scholar 

  14. Fioretto, F., Le, T., Yeoh, W., Pontelli, E., Son, T.C.: Improving DPOP with branch consistency for solving distributed constraint optimization problems. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 307–323. Springer, Heidelberg (2014)

    Google Scholar 

  15. Gaudreault, J., Frayret, J.-M., Pesant, G.: Distributed search for supply chain coordination. Computers in Industry 60(6), 441–451 (2009)

    Article  Google Scholar 

  16. Hamadi, Y., Bessière, C., Quinqueton, J.: Distributed intelligent backtracking. In: Proceedings of the European Conference on Artificial Intelligence (ECAI), pp. 219–223 (1998)

    Google Scholar 

  17. Kumar, A., Faltings, B., Petcu, A.: Distributed constraint optimization with structured resource constraints. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 923–930 (2009)

    Google Scholar 

  18. Lalami, M.E., El Baz, D., Boyer, V.: Multi GPU implementation of the simplex algorithm. Proceedings of the International Conference on High Performance Computing and Communication (HPCC) 11, 179–186 (2011)

    Google Scholar 

  19. Léauté, T., Faltings, B.: Distributed constraint optimization under stochastic uncertainty. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 68–73 (2011)

    Google Scholar 

  20. Maheswaran, R., Tambe, M., Bowring, E., Pearce, J., Varakantham, P.: Taking DCOP to the real world: Efficient complete solutions for distributed event scheduling. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 310–317 (2004)

    Google Scholar 

  21. Modi, P., Shen, W.-M., Tambe, M., Yokoo, M.: ADOPT: Asynchronous distributed constraint optimization with quality guarantees. Artificial Intelligence 161(1–2), 149–180 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Montanari, U.: Networks of constraints: Fundamental properties and applications to picture processing. Information sciences 7, 95–132 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  23. Pawłowski, K., Kurach, K., Michalak, T., Rahwan, T.: Coalition structure generation with the graphic processor unit. Technical Report CS-RR-13-07, Department of Computer Science, University of Oxford (2014)

    Google Scholar 

  24. Pesant, G.: A regular language membership constraint for finite sequences of variables. In: Proceedings of the International Conference on Principles and Practice of Constraint Programming (CP), pp. 482–495 (2004)

    Google Scholar 

  25. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 1413–1420 (2005)

    Google Scholar 

  26. Quimper, C.-G., Walsh, T.: Global grammar constraints. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 751–755. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  27. Rodrigues, L.C.A., Magatão, L.: Enhancing supply chain decisions using constraint programming: a case study. In: Gelbukh, A., Kuri Morales, Á.F. (eds.) MICAI 2007. LNCS (LNAI), vol. 4827, pp. 1110–1121. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  28. Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming. Elsevier (2006)

    Google Scholar 

  29. Sanders, J., Kandrot, E.: CUDA by Example. An Introduction to General-Purpose GPU Programming. Addison Wesley (2010)

    Google Scholar 

  30. Sultanik, E., Modi, P.J., Regli, W.C.: On modeling multiagent task scheduling as a distributed constraint optimization problem. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 1531–1536 (2007)

    Google Scholar 

  31. Trick, M.A.: A dynamic programming approach for consistency and propagation for knapsack constraints. Annals of Operations Research 118(1–4), 73–84 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yeoh, W., Felner, A., Koenig, S.: BnB-ADOPT: An asynchronous branch-and-bound DCOP algorithm. Journal of Artificial Intelligence Research 38, 85–133 (2010)

    MATH  Google Scholar 

  33. Yeoh, W., Yokoo, M.: Distributed problem solving. AI Magazine 33(3), 53–65 (2012)

    Google Scholar 

  34. Yokoo, M. (ed.): Distributed Constraint Satisfaction: Foundation of Cooperation in Multi-agent Systems. Springer (2001)

    Google Scholar 

  35. Zivan, R., Okamoto, S., Peled, H.: Explorative anytime local search for distributed constraint optimization. Artificial Intelligence 212, 1–26 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  36. Zivan, R., Yedidsion, H., Okamoto, S., Glinton, R., Sycara, K.: Distributed constraint optimization for teams of mobile sensing agents. Journal of Autonomous Agents and Multi-Agent Systems 29(3), 495–536 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinando Fioretto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fioretto, F., Le, T., Pontelli, E., Yeoh, W., Son, T.C. (2015). Exploiting GPUs in Solving (Distributed) Constraint Optimization Problems with Dynamic Programming. In: Pesant, G. (eds) Principles and Practice of Constraint Programming. CP 2015. Lecture Notes in Computer Science(), vol 9255. Springer, Cham. https://doi.org/10.1007/978-3-319-23219-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23219-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23218-8

  • Online ISBN: 978-3-319-23219-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics