Skip to main content

Smaller Selection Networks for Cardinality Constraints Encoding

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9255))

  • 2126 Accesses

Abstract

Selection comparator networks have been studied for many years. Recently, they have been successfully applied to encode cardinality constraints for SAT-solvers. To decrease the size of generated formula there is a need for constructions of selection networks that can be efficiently generated and produce networks of small sizes for the practical range of their two parameters: n – the number of inputs (Boolean variables) and k – the number of selected items (a cardinality bound). In this paper we give and analyze a new construction of smaller selection networks that are based on the pairwise selection networks introduced by Codish and Zazon-Ivry. We prove also that standard encodings of cardinality constraints with selection networks preserve arc-consistency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks and their applications. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 167–180. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks: a theoretical and empirical study. Constraints 16(2), 195–221 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Asín, R., Nieuwenhuis, R.: Curriculum-based course timetabling with SAT and MaxSAT. Annals of Operations Research 218(1), 71–91 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  4. Batcher, K.E.: Sorting networks and their applications. In: Proc. of the April 30-May 2, 1968, Spring Joint Computer Conference, AFIPS 1968 (Spring), pp. 307–314. ACM, New York (1968)

    Google Scholar 

  5. Codish, M., Zazon-Ivry, M.: Pairwise networks are superior for selection. http://www.cs.bgu.ac.il/~mcodish/Papers/Sources/pairwiseSelection.pdf

  6. Codish, M., Zazon-Ivry, M.: Pairwise cardinality networks. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 154–172. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into sat. Journal on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)

    MATH  Google Scholar 

  8. Knuth, D.E.: The Art of Computer Programming, Sorting and Searching, vol. 3, 2nd edn. Addison Wesley Longman Publishing Co. Inc., Redwood City (1998)

    Google Scholar 

  9. Parberry, I.: Parallel complexity theory. Pitman, Research notes in theoretical computer science (1987)

    Google Scholar 

  10. Parberry, I.: The pairwise sorting network. Parallel Processing Letters 2, 205–211 (1992)

    Article  MathSciNet  Google Scholar 

  11. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Why Cumulative decomposition is not as bad as it sounds. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 746–761. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Karpiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Karpiński, M., Piotrów, M. (2015). Smaller Selection Networks for Cardinality Constraints Encoding. In: Pesant, G. (eds) Principles and Practice of Constraint Programming. CP 2015. Lecture Notes in Computer Science(), vol 9255. Springer, Cham. https://doi.org/10.1007/978-3-319-23219-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23219-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23218-8

  • Online ISBN: 978-3-319-23219-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics