Skip to main content

Network Adaptive Flow Control Algorithm for Haptic Data Over the Internet–NAFCAH

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 388))

Abstract

This paper deals with the transfer of real time haptic data over the Internet. Some interested transport protocols have already been proposed for the transport of real time haptic data. This paper presents the related work on haptic data transferring. A new network adaptive flow control algorithm is proposed. The new algorithm combines most of the known flow control algorithms while taking into account the network conditions οf the Internet and the significant haptic events.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gerla, M., Sanadidi, M.Y., Wang, R., Zanella, A., Casetti, C., Mascolo, S.: Tcpwestwood: congestion window control using bandwidth estimation. In: IEEE Global Telecommunications Conference, GLOBECOM 2001, vol. 3, pp. 1698–1702. IEEE (2001)

    Google Scholar 

  2. Yang, Y.R., Lam, S.S.: General aimd congestion control. In: Intern. Conf. on Network Protocols, pp. 187–198. IEEE (2000)

    Google Scholar 

  3. Rejaie, R., Handley, M., Estrin, D.: Rap: an end-to-end rate-based congestion control mechanism for real-time streams in the internet. In: Eighteenth Annual Joint Conf. of the IEEE Computer and Communications Societies, INFOCOM 1999, vol. 3, pp. 1337–1345. IEEE (1999)

    Google Scholar 

  4. Widmer, J., Denda, R., Mauve, M.: A survey on tcp-friendly congestion control. IEEE Network 15(3), 28–37 (2001)

    Article  Google Scholar 

  5. Wirz, R., Marn, R., Ferre, M., Barrio, J., Claver, J.M., Ortego, J.: Bidirectional transport protocol for teleoperated robots. ÍEEE Trans. on Industrial Electronics 56(9), 3772–3781 (2009)

    Article  Google Scholar 

  6. Fujimoto, M., Ishibashi, Y.: Packetization interval of haptic media in networked virtual environments. In: Proc. of 4th ACM SIGCOMM Workshop on Network and System Support for Games, pp. 1–6. ACM (2005)

    Google Scholar 

  7. Borst, C.W.: Predictive coding for efficient host-device communication in a pneumatic force-feedback display. In: Eurohaptics Conf., Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 596–599. IEEE (2005)

    Google Scholar 

  8. Lee, S., Kim, J.: Priority-based haptic event filtering for transmission and error control in networked virtual environments. Multimedia systems 15(6), 355–367 (2009)

    Article  Google Scholar 

  9. Ishibashi, Y., Hashimoto, Y., Ikedo, T., Sugawara, S.: Adaptive delta-causality control with adaptive dead-reckoning in networked games. In: Proc. of the 6th ACM SIGCOMM Workshop on Network and System Support for Games, pp. 75–80. ACM (2007)

    Google Scholar 

  10. Hinterseer, P., Steinbach, E., Chaudhuri, S.: Perception-based compression of haptic data streams using kalman filters. In: IEEE Intern. Conf. on Acoustics, Speech and Signal Processing, vol. 5, pp. V–V. IEEE (2006)

    Google Scholar 

  11. Lee, S., Kim, J.: Dynamic network adaptation scheme employing haptic event priority for collaborative virtual environments. In: Proc. of the First International Conference on Immersive Telecommunications. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), p. 12 (2007)

    Google Scholar 

  12. Aziminejad, A., Tavakoli, M., Patel, R.V., Moallem, M.: Transparent time-delayed bilateral teleoperation using wave variables. IEEE Trans. on Control Systems Technology 16(3), 548–555 (2008)

    Article  Google Scholar 

  13. Shahabi, C., Ortega, A., Kolahdouzan, M.R.: A comparison of different haptic compression techniques. In: IEEE Intern. Conf. on Multimedia and Expo, ICME, vol. 1, pp. 657–660. IEEE (2002)

    Google Scholar 

  14. Eid, M., Cha, J., El Saddik, A.: Admux: An adaptive multiplexer for haptic–audio–visual data communication. IEEE Trans. on Instrumentation and Measurement 60(1), 21–31 (2011)

    Article  Google Scholar 

  15. Hamam, A., El Saddik, A.: Toward a mathematical model for quality of experience evaluation of haptic applications. IEEE Trans. on Instrumentation and Measurement 62(12), 3315–3322 (2013)

    Article  Google Scholar 

  16. Iwata, K., Ishibashi, Y., Fukushima, N., Sugawara, S.: Qoe assessment in haptic media, sound, and video transmission: Effect of playout buffering control. Computers in Entertainment (CIE) 8(2), 12 (2010)

    Google Scholar 

  17. Suzuki, N., Katsura, S.: Evaluation of qos in haptic communication based on bilateral control. In: IEEE Intern. Conference on Mechatronics (ICM), pp. 886–891. IEEE (2013)

    Google Scholar 

  18. Isomura, E., Tasaka, S., Nunome, T.: A multidimensional qoe monitoring system for audiovisual and haptic interactive ip communications. In: IEEE Consumer Communications and Networking Conference (CCNC), pp. 196–202. IEEE (2013)

    Google Scholar 

  19. Allin, S., Matsuoka, Y., Klatzky, R.: Measuring just noticeable differences for haptic force feedback: implications for rehabilitation. In: 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 299–302. IEEE (2002)

    Google Scholar 

  20. Karadogan, E., Williams, R.L., Howell, J.N., Conatser Jr., R.R., et al.: A stiffness discrimination experiment including analysis of palpation forces and velocities. Simulation in Healthcare 5(5), 279–288 (2010)

    Article  Google Scholar 

  21. Silva, A.J., Ramirez, O.A.D., Vega, V.P., Oliver, J.P.O.: Phantom omni haptic device: Kinematic and manipulability. In: Electronics, Robotics and Automotive Mechanics Conference, pp. 193–198. IEEE (2009)

    Google Scholar 

  22. Cavusoglu, M.C., Tendick, F.: Multirate simulation for high fidelity haptic interaction with deformable objects in virtual environments. In: IEEE Int. Conf. on Robotics and Automation, ICRA, vol. 3, pp. 2458–2465. IEEE (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Kokkonis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kokkonis, G., Psannis, K.E., Roumeliotis, M. (2016). Network Adaptive Flow Control Algorithm for Haptic Data Over the Internet–NAFCAH. In: Zin, T., Lin, JW., Pan, JS., Tin, P., Yokota, M. (eds) Genetic and Evolutionary Computing. GEC 2015. Advances in Intelligent Systems and Computing, vol 388. Springer, Cham. https://doi.org/10.1007/978-3-319-23207-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23207-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23206-5

  • Online ISBN: 978-3-319-23207-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics