Water of the Pamir – Potential and Constraints

  • Wilfried HaggEmail author
  • Christoph Mayer
Part of the Advances in Asian Human-Environmental Research book series (AAHER)


High mountains in arid regions are known to act as water towers which generate runoff and redistribute it over time and space. Snow and glaciers play important roles as water storages but currently undergo changes in a warming climate. A recession of glacier area was observed in the Pamir during the last four decades of the twentieth century, while recent results indicate slight mass gains during the first decade of the twenty-first century. Fedchenko Glacier, the largest valley glacier in the Pamir, shows a continuous but small volume reduction over the past eight decades. After a period of peak flow will be passed in the near future, a further glacier wastage will reduce annual discharge and change seasonal water availability towards higher streamflow in spring and a runoff reduction in summer. These changes will cause water shortages during the main growing season and cause negative effects for agriculture which highly depends on irrigation.


Glacier changes Meltwater Runoff scenarios Tajikistan 



Wilfried Hagg was supported by the German Research Foundation (DFG, Project HA 5061/3-1). The work of Christoph Mayer was supported by funds of the Arbeitsgemeinschaft für vergleichende Hochgebirgsforschung and the TanDEM-X data proposal XTI_GLAC0335.


  1. Agaltseva N, Spectorman T, White C, Tanton T (2005) Modelling the future climate of the Amu Darya Basin. In: Olsson O, Bauer M (eds) Interstate water resource risk management: towards a sustainable future for the Aral Basin. IWA Publishing, London, pp 9–36Google Scholar
  2. Arendt A, Bolch T, Cogley JG, Gardner A, Hagen J-O, Hock R, Kase G, Pfeffer WT, Moholdt G, Paul F, Radić V, Andreassen L, Bajracharya S, Beedle M, Berthier E, Bhambri R, Bliss A, Brown I, Burgess E, Burgess D, Cawkwell F, Chinn T, Copland L, Davies B, De Angelis H, Dolgova E, Filbert K, Forester R, Fountain A, Frey H, Giffen B, Glasser N, Gurney S, Hagg W, Hal D, Haritashy UK, Hartmann G, Helm C, Herreid S, Howat I, Kapustin G, Khromova T, Kienholz C, Koenig M, Kohler J, Kriegel D, Kutuzov S, Lavrentiev I, Le Bris R, Lund J, Manley W, Mayer C, Miles E, Li X, Menounos B, Mercer A, Moelg N, Mool P, Nosenko G, Negrete A, Nuth C, Pettersson R, Racoviteanu A, Ranzi R, Rastner P, Rau F, Rich J, Rott H, Schneider C, Seliverstov Y, Sharp M, Sigurðsson O, Stokes C, Wheate R, Winsvold S, Wolken G, Wyatt F, Zheltyhina N (2012) Randolph glacier inventory: a dataset of global glacier outlines global land ice measurements from space. USA Digital Media, BoulderGoogle Scholar
  3. Barandun M et al (2013) Re-establishing seasonal mass balance observation at Abramov Glacier, Kyrgyzstan, from 1968–2012. In: Geophysical research abstracts. EGU General Assembly, Vienna, 7–12 April 2013Google Scholar
  4. Finaev A (2009) Review of hydrometeorological observations in Tajikistan for the period of 1990–2005. In: Braun L, Hagg W, Severskiy I, Young G (eds) Assessment of snow, glacier and water resources in Asia. Selected papers from the Workshop in Almaty, November 2006. IHP/HWRP, Koblenz, p 55Google Scholar
  5. Finsterwalder R (1932) Wissenschaftliche Ergebnisse der Alai-Pamir Expedition, 1928. Geodätischer und glaziologischer Teil. Reimer-Vohsen, BerlinGoogle Scholar
  6. Gardelle J, Berthier E, Arnaud Y, Kääb A (2013) Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 7:1263–1286CrossRefGoogle Scholar
  7. Hagg W et al (2013) Glacier and runoff changes in the Rukhk catchment, upper Amu-Darya basin until 2050. Glob Planet Chang 110:62–73CrossRefGoogle Scholar
  8. Hoelzle M, Hagg W, Wagner S (2010) Future glaciation and river flow in the Vakhsh and Panj drainage basins, Central Asia. In: Geophysical research abstracts, EGU General Assembly, Vienna, 2–7 May 2010Google Scholar
  9. Kaser G, Großhauser M, Marzeion B (2010) Contribution potential of glaciers to water availability in different climate regimes. Proc Natl Acad Sci U S A 107:20223–20227CrossRefGoogle Scholar
  10. Kemmerikh AO (1972) The role of glaciers in runoff of Central Asian rivers. Mat Glyats Issled 20:82–94Google Scholar
  11. Khromova TE, Osipova GB, Tsvetkov DG, Dyurgerov MB, Barry RG (2006) Changes in glacier extent in the eastern Pamir, Central Asia, determined from historical data and ASTER imagery. Remote Sens Environ 102:24–32CrossRefGoogle Scholar
  12. Khromova T et al (2014) Glacier area changes in Northern Eurasia. Environ Res Lett 9:015003CrossRefGoogle Scholar
  13. Konovalov VG (1985) Tayanie i stok s lednikov v basseinax rek Sredney Azii (Melt and runoff from glaciers in the river basins of Central Asia). Hydrometeoizdat, LeningradGoogle Scholar
  14. Konovalov VG (2011) Past and prospective changes in the state of Central Asian glaciers. Ice Snow 3:60–68Google Scholar
  15. Konovalov V, Desinov L (2007) Remote sensing monitoring of long term regime of the Pamirs glaciation. IAHS Publ 316:149–156Google Scholar
  16. Kotlyakov VM, Osipova GB, Tsvetkov DG (2008) Monitoring surging glaciers of the Pamirs, central Asia, from space. Ann Glaciol 48:125–134CrossRefGoogle Scholar
  17. Kure S, Jang S, Ohara N, Kavvas ML, Chen ZQ (2013) Hydrologic impact of regional climate change for the snowfed and glacierfed river basins in the Republic of Tajikistan: hydrological response of flow to climate change. Hydrol Process 27:4057–4070CrossRefGoogle Scholar
  18. Lambrecht A, Mayer C, Aizen V, Floricioiu D, Surazakov A (2014) The evolution of Fedchenko glacier in the Pamir, Tajikistan, during the past eight decades. J Glaciol 60:233–244CrossRefGoogle Scholar
  19. Makhmadaliev B, Novikov V, Kayumov A, Karimov U, Perdomo M (eds) (2003) National action plan of the Republic Tajikistan for climate change mitigation. Tajik Met Service, DushanbeGoogle Scholar
  20. Oshanin VF (1879) Russian expedition to Hissar, Karateghin, and the Pamir. Proc R Geogr Soc Lond 1:64–66Google Scholar
  21. Rickmer-Rickmers W (1914) Vorläufiger Bericht über die Pamir-Expedition des DÖAV 1913. Zeitschrift des Deutschen und Österreichischen Alpenvereins 45:1–51Google Scholar
  22. Shchetinnikov A (1998) Morfologiya i rezhim lednikov Pamiro-Alaya (The Morphology and Regime of Pamir-Alay Glaciers). SANIIGMI, TashkentGoogle Scholar
  23. UN (2004) Environmental performance reviews series no. 21 – Tajikistan. Economic Commission for Europe, Committee on Environmental Policy, United Nations, New York/GenevaGoogle Scholar
  24. UNEP (2006) Tajikistan: state of the environment 2005. United Nations Environment Programme, New York/GenevaGoogle Scholar
  25. UNEP (2011) Second assessment of transboundary rivers, lakes and groundwaters. United Nations, New York/GenevaGoogle Scholar
  26. UNEP (2014) The future of the Aral Sea lies in transboundary co-operation. UNEP Global Environment Alert Service. Accessed 15 Aug 2014
  27. Weber M, Braun L, Mauser W, Prasch M (2009) The relevance of glacier melt for the upper Danube river discharge today and in the future. Mitteilungsblatt des Hydrographischen Dienstes in Österreich 86:1–29Google Scholar
  28. WGMS (1989) World Glacier Inventory. Status 1988. IAHS(ICSI)/UNEP/UNESCO, World Glacier Monitoring Service, ParisGoogle Scholar
  29. Yao T et al (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Chang 2:663–667CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesUniversità degli Studi di Milano-BicoccaMilanItaly
  2. 2.Commission for Geodesy and GlaciologyBavarian Academy of Sciences and HumanitiesMunichGermany

Personalised recommendations