Textured Object Recognition: Balancing Model Robustness and Complexity

  • Guido ManfrediEmail author
  • Michel Devy
  • Daniel Sidobre
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9256)


When it comes to textured object modelling, the standard practice is to use a multiple views approach. The numerous views allow reconstruction and provide robustness to viewpoint change but yield complex models. This paper shows that robustness with lighter models can be achieved through robust descriptors. A comparison between various descriptors allows choosing the one providing the best viewpoint robustness, in this case the ASIFT descriptor. Then, using this descriptor, the results show, for a wide variety of object shapes, that as few as seventeen views provide a high level of robustness to viewpoint change while being fast to process and having a small memory footprint. This work concludes advocating in favour of modelling methods using robust descriptors and a small number of views.


Object modelling Object recognition Multiple views Robust descriptors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 510–517. IEEE (2012)Google Scholar
  2. 2.
    Autodesk: 123d catch (2014). (accessed: September 30, 2010)
  3. 3.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008)CrossRefGoogle Scholar
  4. 4.
    Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(8), 1362–1376 (2010)CrossRefGoogle Scholar
  5. 5.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey vision conference, vol. 15, p. 50. Manchester, UK (1988)Google Scholar
  6. 6.
    Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press (2003)Google Scholar
  7. 7.
    Hartley, R.I., Sturm, P.: Triangulation. Computer Vision and Image Understanding 68(2), 146–157 (1997)CrossRefGoogle Scholar
  8. 8.
    Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view rgb-d object dataset. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1817–1824. IEEE (2011)Google Scholar
  9. 9.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  10. 10.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  11. 11.
    Ozuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast keypoint recognition using random ferns. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(3), 448–461 (2010)CrossRefGoogle Scholar
  12. 12.
    Pan, Q., Reitmayr, G., Drummond, T.: Proforma: probabilistic feature-based on-line rapid model acquisition. In: BMVC, pp. 1–11 (2009)Google Scholar
  13. 13.
    Papazov, Chavdar, Burschka, Darius: An efficient RANSAC for 3D object recognition in noisy and occluded scenes. In: Kimmel, Ron, Klette, Reinhard, Sugimoto, Akihiro (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 135–148. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  14. 14.
    Pollefeys, M., Koch, R., Vergauwen, M., Van Gool, L.: Flexible acquisition of 3d structure from motion. In: Proc. IEEE workshop on Image and Multidimensional Digital Signal Processing. Citeseer (1998)Google Scholar
  15. 15.
    Rosten, Edward, Drummond, Tom W.: Machine learning for high-speed corner detection. In: Leonardis, Aleš, Bischof, Horst, Pinz, Axel (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  16. 16.
    Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: 3d object modeling and recognition using local affine-invariant image descriptors and multi-view spatial constraints. International Journal of Computer Vision 66(3), 231–259 (2006)CrossRefGoogle Scholar
  17. 17.
    Royer, E., Lhuillier, M., Dhome, M., Chateau, T.: Localization in urban environments: monocular vision compared to a differential gps sensor. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2005, vol. 2, pp. 114–121. IEEE (2005)Google Scholar
  18. 18.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to sift or surf. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571. IEEE (2011)Google Scholar
  19. 19.
    Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. International Journal of Computer Vision 80(2), 189–210 (2008)CrossRefGoogle Scholar
  20. 20.
    Sturm, Peter: A historical survey of geometric computer vision. In: Real, Pedro, Diaz-Pernil, Daniel, Molina-Abril, Helena, Berciano, Ainhoa, Kropatsch, Walter (eds.) CAIP 2011, Part I. LNCS, vol. 6854, pp. 1–8. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  21. 21.
    Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Galvez-Lopez, D., Haussermann, K., Janssen, R., Montiel, J.M.M., Perzylo, A., Schiessle, B., Tenorth, M., Zweigle, O., van de Molengraft, R.: Roboearth. IEEE Robotics Automation Magazine 18(2), 69–82 (2011)CrossRefGoogle Scholar
  22. 22.
    Yu, G., Morel, J.M.: ASIFT: an algorithm for fully affine invariant comparison. Image Processing On Line 2011 (2011)Google Scholar
  23. 23.
    Zabih, R., Woodfill, J.: A non-parametric approach to visual correspondence. In: IEEE transactions on pattern analysis and machine intelligence. Citeseer (1996)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.LAAS CNRSToulouseFrance
  2. 2.Univ. de Toulouse, UPSToulouseFrance

Personalised recommendations