The Brightness Clustering Transformand Locally Contrasting Keypoints

  • J. Lomeli-REmail author
  • Mark S. Nixon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9256)


In recent years a new wave of feature descriptors has been presented to the computer vision community, ORB, BRISK and FREAK amongst others. These new descriptors allow reduced time and memory consumption on the processing and storage stages of tasks such as image matching or visual odometry, enabling real time applications. The problem is now the lack of fast interest point detectors with good repeatability to use with these new descriptors. We present a new blob-detector which can be implemented in real time and is faster than most of the currently used feature-detectors. The detection is achieved with an innovative non-deterministic low-level operator called the Brightness Clustering Transform (BCT). The BCT can be thought as a coarse-to-fine search through scale spaces for the true derivative of the image; it also mimics trans-saccadic perception of human vision. We call the new algorithm Locally Contrasting Keypoints detector or LOCKY. Showing good repeatability and robustness to image transformations included in the Oxford dataset, LOCKY is amongst the fastest affine-covariant feature detectors.


Integral Image Image Transformation Visual Odometry Interest Point Detector Maximally Stable Extremal Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. In: Foundations and Trends in Computer Graphics and Vision, vol. 3, pp. 177–280. Now Publishers Inc. (2008)Google Scholar
  2. 2.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 15, p. 50 (1988)Google Scholar
  3. 3.
    Smith, S.M., Brady, J.M.: SUSAN-a new approach to low level image processing. IJCV 23, 45–78 (1997)Google Scholar
  4. 4.
    Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  5. 5.
    Mair, E., Hager, G.D., Burschka, D., Suppa, M., Hirzinger, G.: Adaptive and generic corner detection based on the accelerated segment test. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 183–196. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  6. 6.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. In: Image and Vision Computing, vol. 22, pp. 761–767. Elsevier (2004)Google Scholar
  7. 7.
    Agrawal, M., Konolige, K., Blas, M.R.: CenSurE: Center surround extremas for realtime feature detection and matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  8. 8.
    Gunn, S.R.: On the discrete representation of the laplacian of gaussian. In: Pattern Recognition, vol. 32, pp. 1463–1472. Elsevier (1999)Google Scholar
  9. 9.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. IJCV 65, 43–72 (2005)Google Scholar
  10. 10.
    Viola, P., Jones, M.: Robust real-time object detection. IJCV 4, 34–47 (2001)Google Scholar
  11. 11.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  12. 12.
    Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  13. 13.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  14. 14.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: ICCV, pp. 2564–2571. IEEE (2011)Google Scholar
  15. 15.
    Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: Binary robust invariant scalable keypoints. In: ICCV, pp. 2548–2555. IEEE (2011)Google Scholar
  16. 16.
    Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: CVPR, pp. 510–517. IEEE (2012)Google Scholar
  17. 17.
    Marr, D., Hildreth, E.: Theory of edge detection. In: Proceedings of the Royal Society of London. Series B. Biological Sciences, vol. 207, pp. 187–217. The Royal Soc. (1980)Google Scholar
  18. 18.
    Heinly, J., Dunn, E., Frahm, J.-M.: Comparative evaluation of binary features. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 759–773. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  19. 19.
    Jonides, J., Irwin, D.E., Yantis, S.: Integrating visual information from successive fixations. Science 215, 192–194 (1982)CrossRefGoogle Scholar
  20. 20.
    Dickinson, S.J., Pizlo, Z.: Shape perception in human and computer vision. Springer (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Electronics and Computer SciencesUniversity of SouthamptonSouthamptonEngland

Personalised recommendations