Wood Veneer Species Recognition Using Markovian Textural Features

  • Michal HaindlEmail author
  • Pavel Vácha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9256)


A mobile Android application that can automatically recognize wood species from a low quality mobile phone photo under varying illumination conditions is presented. The wood recognition is based on the Markovian, spectral, and illumination invariant textural features. The method performance was verified on a wood database, which contains veneers from sixty-six varied European and exotic wood species. The Markovian features improvement of the correct wood recognition rate is about 40% compared to the best alternative - the Local Binary Patterns features.


Wood recognition Textural features Illumination invariants Surface reflectance field Bidirectional texture function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bovik, A.: Analysis of multichannel narrow-band filters for image texture segmentation. IEEE Trans. on Signal Processing 39(9), 2025–2043 (1991)CrossRefGoogle Scholar
  2. 2.
    Bremananth, R., Nithya, B., Saipriya, R.: Wood species recognition using glcm and correlation. In: International Conference on Advances in Recent Technologies in Communication and Computing. ARTCom 2009, pp. 615–619. IEEE (2009)Google Scholar
  3. 3.
    Haindl, M.: Visual data recognition and modeling based on local markovian models. In: Florack, L., Duits, R., Jongbloed, G., Lieshout, M.C., Davies, L. (eds.) Mathematical Methods for Signal and Image Analysis and Representation, Computational Imaging and Vision, chap. 14, vol. 41, pp. 241–259. Springer, London (2012). doi: 10.1007/978-1-4471-2353-8_14. CrossRefGoogle Scholar
  4. 4.
    Haindl, M., Filip, J.: Visual Texture. Advances in Computer Vision and Pattern Recognition. Springer-Verlag London, London (January 2013)Google Scholar
  5. 5.
    Jain, A., Healey, G.: A multiscale representation including opponent colour features for texture recognition. IEEE Transactions on Image Processing 7(1), 124–128 (1998)CrossRefGoogle Scholar
  6. 6.
    Khalid, M., Lee, E.L.Y., Yusof, R., Nadaraj, M.: Design of an intelligent wood species recognition system. International Journal of Simulation System, Science and Technology 9(3), 9–19 (2008)Google Scholar
  7. 7.
    Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(8), 837–842 (1996)CrossRefGoogle Scholar
  8. 8.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)CrossRefGoogle Scholar
  9. 9.
    Randen, T., Husøy, J.H.: Filtering for texture classification: A comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(4), 291–310 (1999)CrossRefGoogle Scholar
  10. 10.
    Santini, S., Jain, R.: Similarity measures. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(9), 871–883 (1999)CrossRefGoogle Scholar
  11. 11.
    Tou, J.Y., Tay, Y.H., Lau, P.Y.: A comparative study for texture classification techniques on wood species recognition problem. In: Fifth International Conference on Natural Computation. ICNC 2009, vol. 5, pp. 8–12. IEEE (2009)Google Scholar
  12. 12.
    Tou, J.Y., Tay, Y.H., Lau, P.Y.: Rotational invariant wood species recognition through wood species verification. In: First Asian Conference on Intelligent Information and Database Systems. ACIIDS 2009, pp. 115–120. IEEE (2009)Google Scholar
  13. 13.
    Vacha, P., Haindl, M.: Image retrieval measures based on illumination invariant textural MRF features. In: Sebe, N., Worring, M. (eds.) Proceedings of ACM International Conference on Image and Video Retrieval, CIVR 2007, pp. 448–454. ACM, July 9–11, 2007Google Scholar
  14. 14.
    Vácha, P., Haindl, M.: Texture recognition using robust Markovian features. In: Salerno, E., Çetin, A.E., Salvetti, O. (eds.) MUSCLE 2011. LNCS, vol. 7252, pp. 126–137. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  15. 15.
    Yusof, R., Rosli, N.R., Khalid, M.: Using gabor filters as image multiplier for tropical wood species recognition system. In: 2010 12th International Conference on Computer Modelling and Simulation (UKSim), pp. 289–294. IEEE (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.The Institute of Information Theory and AutomationCzech Academy of SciencesPragueCzech Republic

Personalised recommendations