Pose Normalisation for 3D Vehicles

  • Trevor FarrugiaEmail author
  • Jonathan Barbarar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9256)


This study\(^1\) investigates the various pose normalisation techniques that can be used for 3D vehicle models. A framework is built on which the pose normalisation performance of four PCA based techniques are tested on a database of 335 3D vehicles. The evaluation is performed using two methods. In the first method a silhouette view of each pose normalised vehicle is rendered from a consitent point in the 3D space. The pose consitency of each vehicle is then compared to the silhouettes of the vehicles in the same category. The second method compares the direct influence of the four techniques on the final precision and recall results of a search algorithm based on a simple scan-line feature descriptor. Results from both methods show that Center-of-Gravity PCA and Continous-PCA performed noticably better then PCA and Normal-PCA. The superiority of Continous-PCA over Center-of-Gravity PCA was negligible.


Pose normalisation Principal component analysis Normal PCA Centre of gravity PCA Continous PCA 3D vehicle 3D model alignment Vehicle recognition Vehicle classification Symmetry normalisation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A search engine for 3D models. ACM Trans. Graph. 22(1), 83–105 (2003)CrossRefGoogle Scholar
  2. 2.
    Wei, L., Yuanjun, H.: 3D model retrieval based on orthogonal projections. In: Proceedings of the Ninth International Conference on Computer Aided Design and Computer Graphics, CAD-CG 2005, pp. 157–162. IEEE Computer Society, Washington, DC (2005)Google Scholar
  3. 3.
    Pears, N., Heseltine, T., Romero, M.: From 3D point clouds to pose-normalised depth maps. Int. J. Comput. Vision 89(2–3), 152–176 (2010). doi: 10.1007/s11263-009-0297-y CrossRefGoogle Scholar
  4. 4.
    Vranic, D., Saupe, D.: 3D model retrieval. In: Proc. Spring Conference on Computer Graphics and its Applications, pp. 89–93. Budmerice Manor, Slovakia (2000)Google Scholar
  5. 5.
    Paquet, E., Rioux, M., Murching, A., Naveen, T., Tabatabai, A.: Description of shape information for 2-D and 3-D objects. Signal Processing: Image Communication 16(1–2), 103–122 (2000)Google Scholar
  6. 6.
    Papadakis, P., Pratikakis, I., Perantonis, S., Theoharis, T.: Efficient 3D shape matching and retrieval using a concrete radialized spherical projection representation. Pattern Recogn. 40(9), 2437–2452 (2007)zbMATHCrossRefGoogle Scholar
  7. 7.
    Napoléon, T., Sahbi, H.: From 2D silhouettes to 3D object retrieval: Contributions and benchmarking. J. Image Video Process., 1:1–1:22, January 2010Google Scholar
  8. 8.
    Vranic, D.: 3D Model Retrieval. Ph.D. thesis, University of Leipzig (2004)Google Scholar
  9. 9.
    Papadakis, P., Pratikakis, I., Theoharis, T., Perantonis, S.: Panorama: A 3D shape descriptor based on panoramic views for unsupervised 3D object retrieval. International Journal of Computer Vision 89(2–3), 177–192 (2010)CrossRefGoogle Scholar
  10. 10.
    Tangelder, J.W., Veltkamp, R.C.: A survey of content based 3D shape retrieval methods. Multimedia Tools Appl. 39(3), 441–471 (2008)CrossRefGoogle Scholar
  11. 11.
    Chaouch, M., Verroust-Blondet, A.: 3D model retrieval based on depth line descriptor. In: 2007 IEEE International Conference on Multimedia and Expo., pp. 599–602, July 2007Google Scholar
  12. 12.
    Axenopoulos, A., Litos, G., Daras, P.: 3D model retrieval using accurate pose estimation and view-based similarity. In: Proceedings of the 1st ACM International Conference on Multimedia Retrieval, ICMR 2011, pp. 41:1–41:8. ACM, New York (2011)Google Scholar
  13. 13.
    NIST: Results for shrec 2009 - shape retrieval contest on a new generic shape benchmark.
  14. 14.
    Atmosukarto, I., Wilamowska, K., Heike, C., Shapiro, L.G.: 3D object classification using salient point patterns with application to craniofacial research. Pattern Recogn. 43(4), 1502–1517 (2010)CrossRefGoogle Scholar
  15. 15.
    Sfikas, K., Theoharis, T., Pratikakis, I.: Rosy+: 3D object pose normalization based on pca and reflective object symmetry with application in 3D object retrieval. International Journal of Computer Vision 91(3), 262–279 (2011)CrossRefGoogle Scholar
  16. 16.
    DMI: Dmi car 3D models.
  17. 17.
    Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The princeton shape benchmark. In: Proceedings of the Shape Modeling Applications, pp. 167–178, June 2004Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Saint Martin’s Institute of Higher EducationHamrunMalta

Personalised recommendations