Skip to main content

Microbial Production of Polyhydroxyalkanoates for Agricultural and Aquacultural Applications

  • Chapter
  • 1611 Accesses

Part of the book series: Microbiology Monographs ((MICROMONO,volume 29))

Abstract

Current agriculture and aquaculture industries require the usage of large quantities of plastics, which contribute to a significant increase of plastic waste to be disposed. In order to overcome the serious drawback of huge quantities of plastic, researches on innovative biodegradable materials have been developed. Biomaterials are natural products catabolized and synthesized by different microorganisms. Bioplastics are known as special type of biomaterials that can be assimilated by many species of microorganisms and do not cause toxic effects to the host. The most widely produced bioplastics are polyhydroxyalkanoates (PHAs), aliphatic polyesters, polysaccharides, and polylactides. PHAs are environmentally friendly biodegradable polymers which can be employed in a wide range of agricultural, industrial, medical, and pharmaceutical applications. This chapter addresses the microbial production of PHAs and the usage of short-chain-length-PHAs: poly(3-hydroxybutyrate) [P(3HB)], poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)], and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] for various applications in agricultural and aquacultural industries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agus J, Kahar P, Abe H, Doi Y et al (2006) Molecular weight characterization of poly [(R)-3-hydroxybutyrate] synthesized by genetically engineered strains of Escherichia coli. Polym Degrad Stab 91:1138–1146

    Article  CAS  Google Scholar 

  • Akiyama M, Taima Y, Doi Y (1992) Production of poly(3-hydroxyalkanoates) by a bacterium of the genus Alcaligenes utilizing long-chain fatty acids. Appl Microbiol Biotechnol 37:698–701

    CAS  Google Scholar 

  • Alderete JE, Karl DW, Park CH (1993) Production of poly (hydroxybutyrate) homopolymer and copolymer from ethanol and propanol in a fed batch culture. Biotechnol Prog 9:520–525

    Article  CAS  Google Scholar 

  • Amirul AA, Yahya ARM, Sudesh K et al (2008) Biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus sp. USMAA1020 isolated from Lake Kulim, Malaysia. Bioresour Technol 99:4903–4909

    Article  CAS  PubMed  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Mol Biol Rev 54:450–472

    CAS  Google Scholar 

  • Ayub ND, Pettinari MJ, Méndez BS et al (2007) The polyhydroxyalkanoate genes of a stress resistant Antarctic Pseudomonas are situated within a genomic island. Plasmid 58:240–248

    Article  CAS  PubMed  Google Scholar 

  • Barik TK, Sahu B (2008) Nanosilica—from medicine to pest control. Parasitol Res 103:253–258

    Article  CAS  PubMed  Google Scholar 

  • Bazzo GC, Lemos-Senna E, Pires ATN (2009) Poly(3-hydroxybutyrate)/chitosan/ketoprofen or piroxicam composite microparticles: preparation and controlled drug release evaluation. Carbohydr Polym 77:839–844

    Article  CAS  Google Scholar 

  • Bhubalan K, Kam YC, Yong KH et al (2010) Cloning and expression of the PHA synthase gene from a locally isolated Chromobacterium sp. USM2. Malays J Microbiol 6(1):81–90

    Google Scholar 

  • Biedermann J, Owen AJ, Schloe KT, Gassner F, Süssmuth R (1997) Interaction between poly-3-hydroxybutyrate-co-3-hydroxyvalerate and a denitrifying Pseudomonas strain. Can J Microbiol 43:561–568

    Article  CAS  PubMed  Google Scholar 

  • Boley A, Müller W-R, Haider G (2000) Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems. Aquacult Eng 22:75–85

    Article  Google Scholar 

  • Briassoulis D (2004) An overview on the mechanical behavior of biodegradable agricultural films. J Polym Environ 12(2):65–81

    Article  CAS  Google Scholar 

  • Byrom D (1987) Polymer synthesis by micro-organisms: technology and economics. Trends Biotechnol 5:246–250

    Article  CAS  Google Scholar 

  • Byrom D (1992) Production of polyhydroxyvalerate copolymers. FEMS Microbiol Lett 103:247–250

    CAS  Google Scholar 

  • Cannington F, Duggings RB, Roan RG (1975) Florida vegetable production using plastic film mulch with drip irrigation. Proc Nat Agric Plastic Congr 12:11–15

    Google Scholar 

  • Cavalheiro JMBT, Raposo RS, de Almeida MCMD et al (2012) Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresour Technol 111:391–397

    Article  CAS  PubMed  Google Scholar 

  • Ch’ng DHE, Lee W-H, Sudesh K (2012) Biosynthesis and lipase-catalysed hydrolysis of 4-hydroxybutyrate-containing polyhydroxyalkanoates from Delftia acidovorans. Malays J Microbiol 8:156–163

    Google Scholar 

  • Chanprateep S, Katakura Y, Visetkoop S et al (2008) Characterization of new isolated Ralstonia eutropha strain A-04 and kinetic study of biodegradable copolyester poly(3-hydroxybutyrate-co-4-hydroxybutyrate) production. J Ind Microbiol Biotechnol 35:1205–1215

    Article  CAS  PubMed  Google Scholar 

  • Chanprateep S, Buasri K, Muangwong A et al (2010) Biosynthesis and biocompatibility of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym Degrad Stab 95:2003–2012

    Article  CAS  Google Scholar 

  • Chen JY, Song G, Chen GQ (2006) A lower specificity PhaC2 synthase from Pseudomonas stutzeri catalyses the production of copolyesters consisting of short-chain-length and medium-chain-length 3-hydroxyalkanoates. Antonie Van Leeuwenhoek 89:157–167

    Article  CAS  PubMed  Google Scholar 

  • Chien CC, Chen CC, Choi MH et al (2007) Production of poly-[beta]-hydroxybutyrate (PHB) by Vibrio spp. isolated from marine environment. J Biotechnol 132:259–263

    Article  CAS  PubMed  Google Scholar 

  • Choi JI, Lee SY (1999) High-level production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by fed-batch culture of recombinant Escherichia coli. Appl Environ Microbiol 65:4363–4368

    PubMed Central  CAS  PubMed  Google Scholar 

  • Choi MH, Yoon SC, Lenz RW (1999) Production of poly(3-hydroxybutyric acid-co-4-hydroxybutyric acid) and poly(4-hydroxybutyric acid) without subsequent degradation by Hydrogenophaga pseudoflava. Appl Environ Microbiol 65:1570–1577

    PubMed Central  CAS  PubMed  Google Scholar 

  • Choi GG, Kim MW, Kim JY, Rhee YH (2003) Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with high molar fractions of 3-hydroxyvalerate by a theorenine-overproducing mutant of Alcaligenes sp. SH69. Biotechnol Lett 25:665–670

    Article  CAS  PubMed  Google Scholar 

  • Corbin AT, Miles C, Cowan J et al (2013) Current and future prospects for biodegradable plastic mulch in certified organic production systems, extension foundation. eOrganic community of practice: 67951

    Google Scholar 

  • Costa C, Lobo JMS (2001) Modeling and comparison of dissolution profiles. Eur J Pharm Sci 13:123–133

    Article  CAS  PubMed  Google Scholar 

  • De Schryver P, Dierckens K, Bahn QQ, Amalia R, Marzorati M et al (2011) Convergent dynamics of the juvenile European sea bass gut microbiota induced by poly-b-hydroxybutyrate. Environ Microbiol 13:1042–1051

    Article  PubMed  CAS  Google Scholar 

  • Defoirdt T, Halet D, Vervaeren H et al (2007) The bacterial storage compound poly-b-hydroxybutyrate protects Artemia franciscana from pathogenic Vibrio campbellii. Environ Microbiol 9:445–452

    Article  CAS  PubMed  Google Scholar 

  • Dennis D, Sein V, Martines E et al (2008) PhaP is involved in the formation of a network on the surface of polyhydroxyalkanoate inclusions in Cupriavidus necator H16. J Bacteriol 190:555–563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doi Y (1990) Microbial polyesters. VCH, New York, Ch 3

    Google Scholar 

  • Doi Y, Kunioka M, Nakamura Y et al (1986) Nuclear magnetic resonance studies on poly(β-hydroxybutyrate) and a copolyester of β-hydroxybutyrate and β-hydroxyvalerate isolated from Alcaligenes eutrophus H16. Macromolecules 19:2860–2864

    Article  CAS  Google Scholar 

  • Doi Y, Tamaki A, Kunioka M et al (1988) Production of copolyesters of 3-hydroxybutyrate and 3-hydroxyvalerate by Alcaligenes eutrophus from butyric and pentanoic acids. Appl Microbiol Biotechnol 28:330–334

    Article  CAS  Google Scholar 

  • Doi Y, Segawa A, Kunioka M (1989) Biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) produced from gamma-butyrolactone and butyric acid by Alcaligenes eutrophus. Polym Commun 30:169–171

    CAS  Google Scholar 

  • Dugan JS (2001) Novel properties of PLA fibers. Int Nonwovens J 10:29–33

    CAS  Google Scholar 

  • Eggink G, de Waard P, Huijberts GNM (1995) Formation of novel poly(hydroxyalkanoates) from long-chain fatty acids. Can J Microbiol 41(1):14–21

    Article  CAS  PubMed  Google Scholar 

  • El Bahri Z, Taverdet JL (2007) Elaboration and characterisation of microparticles by pesticide model. Powder Technol 172:30–40

    Article  CAS  Google Scholar 

  • Emerenciano M, Gaxiola G, Cuzon G (2013) Biofloc technology (BFT): a review for aquaculture application and animal food industry. In: Matovic MD (ed) Biomass now—cultivation and utilization. InTech, Rijeka

    Google Scholar 

  • Espi E, Salmeron A, Garcia Y et al (2006) Plastic films for agricultural applications. Plast Film Sheeting 22:85–102

    Article  CAS  Google Scholar 

  • Fallik E, Okon Y (1996) Inoculants of Azospirilum brasilense: biomass production, survival and growth promotion of Setaria italica and Zea mays. Soil Biol Biochem 28:123–126

    Article  CAS  Google Scholar 

  • Fernández-Pérez M (2007) Controlled release systems to prevent the agro-environmental pollution derived from pesticide use. J Environ Sci Health B 42:857–862

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Pérez M, Flores-Céspedes F, González-Pradas E et al (2004) Use of activated bentonites in controlled-release formulations of atrazine. J Agric Food Chem 52:3888–3893

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Urrusuno R, Gines JM, Morillo E (2000) Development of controlled release formulations of alachlor in ethylcellulose. J Microencapsul 17:331–342

    Article  CAS  PubMed  Google Scholar 

  • Fleck-Arnold JE (2000) Plastic mulch films-additives and their effects. Proc Natl Agric Plast Congr 29:310–314

    Google Scholar 

  • Gangrade N, Price JC (1991) Poly(hydroxybutyrate-hydroxyvalerate) microspheres containing progesterone: preparation, morphology and release properties. J Microencapsul 8:185–202

    Article  CAS  PubMed  Google Scholar 

  • Garrido-Herrera FJ, Daza-Fernández I, González-Pradas E et al (2009) Lignin-based formulations to prevent pesticides pollution. J Hazard Mater 168:220–225

    Article  CAS  PubMed  Google Scholar 

  • Grassie N, Murray E, Holmes P (1984) The thermal degradation of poly-β-hydroxybutyric acid: part 1-identification and quantitative analysis of products. Polym Degrad Stab 6:47–61

    Article  CAS  Google Scholar 

  • Grillo R, Melo NF, Lima R et al (2010) Characterization of atrazine-loaded biodegradable poly(hydroxybutyrate-co-hydroxyvalerate) microspheres. J Polym Environ 18:26–32

    Article  CAS  Google Scholar 

  • Grillo R, Pereira AES, De Melo NFS et al (2011) Controlled release system for ametryn using polymer microspheres: preparation, characterization and release kinetics in water. J Hazard Mater 186:1645–1651

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Wing MT, Rusch KA, Malone RF (2007) Polyhydroxyalkanoates as a carbon source for denitrification of waters. In: World environmental & water resources congress

    Google Scholar 

  • Gutierrez-Wing MT, Malone RF, Rusch KA (2014) Development of a model for PHA-based denitrification in a packed bed reactor. Aquacult Eng 60:41–47

    Article  Google Scholar 

  • Hablot E, Dharmalingam S, Hayes DG et al (2014) Effect of simulated weathering on physicochemical properties and inherent biodegradation of PLA/PHA nonwoven mulches. J Polym Environ 22:417–429

    Article  CAS  Google Scholar 

  • Hayes DG, Dharmalingam S, Wadsworth LC et al (2012) Biodegradable agricultural mulches derived from biopolymers. In: Khemani K, Scholz C (eds) Degradable polymers and materials, principles and practice. ACS, Washington, DC

    Google Scholar 

  • Haywood GW, Anderson AJ, Williams GA et al (1991) Accumulation of a poly-(hydroxyalkanoate) copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126. Int J Biol Macromol 13:83–88

    Article  CAS  PubMed  Google Scholar 

  • Hiraishi A, Khan ST (2003) Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment. Appl Microbiol Biotechnol 61:103–109

    Article  CAS  PubMed  Google Scholar 

  • Hiramitsu M, Koyama N, Doi Y (1993) Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Alcaligenes latus. Biotechnol Lett 15:461–464

    Article  CAS  Google Scholar 

  • Hsieh W-C, Wada Y, Chang C-P (2009) Fermentation, biodegradation and tensile strength of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) synthesized by Delftia acidovorans. J Taiwan Inst Chem Eng 40:143–147

    Article  CAS  Google Scholar 

  • Huisman GW, de Leeuw O, Eggink G et al (1989) Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Appl Environ Microbiol 55(8):1949–1954

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huisman GW, Wonink E, de Koning G et al (1992) Synthesis of poly (3-hydroxyalkanoates) by mutant and recombinant pseudomonas strains. Appl Microbiol Biotechnol 38:1–5

    Article  CAS  Google Scholar 

  • Immirzi B, Malinconico M, Romano G et al (2003) Biodegradable films of natural polysaccharides blends. J Mater Sci Lett 22(20):1389–1392

    Article  CAS  Google Scholar 

  • Iwata T, Tsunoda K, Aoyagi Y et al (2003) Mechanical properties of uniaxially cold-drawn films of poly ([R]-3-hydroxybutyrate). Polym Degrad Stab 79:217–224

    Article  CAS  Google Scholar 

  • Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–432

    Article  CAS  PubMed  Google Scholar 

  • Kadouri D, Jurkevitch E, Okon Y (2003) Involvement of the reserve material poly-β-hydroxybutyrate (PHB) in Azospirillum brasilense in stress endurance and root colonization. Appl Environ Microbiol 69:3244–3250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kadouri D, Jurkevitch E, Okon Y et al (2005) Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit Rev Microbiol 31:55–67

    Article  CAS  PubMed  Google Scholar 

  • Kaihara S, Osanai Y, Nishikawa K et al (2005) Enzymatic transformation of bacterial polyhydroxyalkanoates into repolymerizable oligomers directed towards chemical recycling. Macromol Biosci 5:644–652

    Article  CAS  PubMed  Google Scholar 

  • Kang C-K, Kusaka S, Doi Y (1995) Structure and properties of poly(3-hydroxybutyrate co-4-hydroxybutyrate) produced by Alcaligenes latus. Biotechnol Lett 17:583–588

    Article  CAS  Google Scholar 

  • Kasirajan S, Ngouajio M (2012) Polyethylene and biodegradable mulches for agricultural applications: a review. Agron Sustain Dev 32:501–529

    Article  CAS  Google Scholar 

  • Khan KA, Rhodes CT (1975) The concept of dissolution efficiency. J Pharm Pharmacol 27:48–49

    Article  CAS  PubMed  Google Scholar 

  • Khan AYA, Wadsworth LC, Ryan CM (1995) Polymer-laid nonwovens from poly(lactide) resin. Int Nonwovens J 7:69–73

    Google Scholar 

  • Kim MN, Lee AR, Yoon JS et al (2000) Biodegradation of poly(3-hydroxybutyrate), Sky-Green and Mater-Bi by fungi isolated from soils. Eur Polym J 36:1677–1685

    Article  CAS  Google Scholar 

  • Kim JS, Lee BH, Kim BS (2005) Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha. Biochem Eng J 23:169–174

    Article  CAS  Google Scholar 

  • Kimura H, Yoshida Y, Doi Y (1992) Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Pseudomonas acidovorans. Biotechnol Lett 14:445–450

    Article  CAS  Google Scholar 

  • Kolibachuk D, Miller A, Dennis D (1999) Cloning, molecular analysis and expression of the polyhydroxyalkanoic acid synthase (phaC) gene from Chromobacterium violaceum. Appl Environ Microbiol 65(8):3561–3565

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koller M, Gasser I, Schmid F et al (2011) Linking ecology with economy: insights into polyhydroxyalkanoate-producing microorganisms. Eng Life Sci 11:222–237

    Article  CAS  Google Scholar 

  • Kulkarni AR, Soppimath KS, Aminabhavi TM et al (2000) Glutaraldehyde crosslinked sodium alginate beads containing liquid pesticide for soil application. J Control Release 63:97–105

    Article  CAS  PubMed  Google Scholar 

  • Lamont WJ (2005) Plastics: modifying the microclimate for the production of vegetable crops. HortTechnology 15:477–481

    Google Scholar 

  • Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Chang HN (1993) High cell density cultivation of Escherichia coli using sucrose as carbon source. Biotechnol Lett 15:971–974

    Article  CAS  Google Scholar 

  • Lee EY, Kang SH, Choi CY (1995) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by newly isolated Agrobacterium sp. SH-1 and GW-014 from structurally unrelated single carbon substrates. J Ferment Bioeng 79:328–334

    Article  CAS  Google Scholar 

  • Lee Y-H, Kang M-S, Jung Y-M (2000) Regulating the molar fraction of 4-hydroxybutyrate in poly(3-hydroxybutyrate-4-hydroxybutyrate) biosynthesis by Ralstonia eutropha using propionate as a stimulator. J Biosci Bioeng 89:380–383

    Article  CAS  PubMed  Google Scholar 

  • Lee W-H, Azizan MNM, Sudesh K (2004) Effects of culture conditions on the composition of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) synthesized by Comamonas acidovorans. Polym Degrad Stab 84:129–134

    Article  CAS  Google Scholar 

  • Lee WH, Azizan MNM, Sudesh K (2007) Magnesium affects poly(3-hydroxybutyrate-co-4-hydroxybutyrate) content and composition by affecting glucose uptake in Delftia acidovorans. Malays J Microbiol 3:31–34

    Google Scholar 

  • Lemieux PM (1997) Evaluation of emissions from the open burning of household waste in barrels. US Environmental Protection Agency Report 600/R-97-134a, Washington, DC, p 70

    Google Scholar 

  • Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis biodegradable plastics and biotechnology. Biomacromolecules 6(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Levitan L (2005) Reducing dioxin emissions by recycling agricultural plastics: creating a viable alternative to open burning. In: Great Lakes regional pollution prevention roundtable, New York

    Google Scholar 

  • Li Z-J, Shi Z-Y, Jian J et al (2010) Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from unrelated carbon sources by metabolically engineered Escherichia coli. Metab Eng 12:352–359

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zhang J, Li S et al (2011) Research progress of elastic nonwovens with meltblown technology. Adv Mater Res 332–334:1247–1252

    Article  CAS  Google Scholar 

  • Lionzo MIZ, Re MI, Guterres SS, Pohlmann AR (2007) Microparticles prepared with poly(hydroxybutyrate-co-hydroxyvalerate) and poly(ε-caprolactone) blends to control the release of a drug model. J Microencapsul 24:175–186

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Chen GQ (2007) Production and characterization of medium-chain-length polyhydroxyalkanoate with high 3-hydroxytetradecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Appl Microbiol Biotechnol 76:1153–1159

    Article  CAS  PubMed  Google Scholar 

  • Lobo FA, De Aguirre CL, Souza PMS et al (2012) Preparation and characterization of polymeric microparticles used for controlled release of ametryn herbicide. In: Hasaneed MN (ed) Herbicides—properties, synthesis and controls of weeds. InTech, Rijeka, pp 3–16

    Google Scholar 

  • Luengo JM, García B, Sandoval A et al (2003) Bioplastics from microorganisms. Curr Opin Microbiol 6:251–260

    Article  CAS  PubMed  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanaotes): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maiti P, Batt CA, Giannelis EP (2007) New biodegradable polyhydroxybutyrate/layered silicate nanocomposites. Biomacromolecules 8:3393–3400

    Article  CAS  PubMed  Google Scholar 

  • Maqueda C, Villaverde J, Sopena F et al (2008) Novel system for reducing leaching of the herbicide metribuzin using clay-gel-based formulation. J Agric Food Chem 56:11941–11946

    Article  CAS  PubMed  Google Scholar 

  • Martin DP, Williams SF (2003) Medical applications of poly-4-hydroxybutyrate : a strong flexible absorbable biomaterial. Biochem Eng J 16:97–105

    Article  CAS  Google Scholar 

  • Melo NF, Grillo R, Rosa AH et al (2008) Study of the interaction between hydroxymethylnitrofurazone and 2-hydroxypropyl-beta-cyclodextrin. J Pharm Biomed Anal 47:865–869

    Article  PubMed  CAS  Google Scholar 

  • Moraes CM, De Paula E, Rosa AH et al (2010) Physicochemical stability of poly(lactide-co-glycolide) nanocapsules containing the local anesthetic Bupivacaine. J Braz Chem Soc 21:995–1000

    Article  CAS  Google Scholar 

  • Mothes G, Ackermann JU (2005) Synthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a target mole fraction of 4-hydroxybutyric acid units by two-stage continuous cultivation of Delftia acidovorans P4a. Eng Life Sci 5:58–62

    Article  CAS  Google Scholar 

  • Nakamura S, Doi Y (1992) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules 25:4237–4241

    Article  CAS  Google Scholar 

  • Natarajan V, Krithica N, Madhan B, Sehgal PK (2011) Formulation and evaluation of quercetin polycaprolactone microspheres for the treatment of rheumatoid arthritis. J Pharm Sci 100:195–205

    Article  CAS  PubMed  Google Scholar 

  • Nhan DT, Wille M, De Schryver P, Defoirdt T, Bossier P, Sorgeloos P (2010) The effect of poly β-hydroxybutyrate on larviculture of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture 302:76–81

    Article  CAS  Google Scholar 

  • Nishida H, Tokiwa Y (1992) Distribution of poly (β-hydroxybutyrate) and poly (a-caprolactone) degrading microorganisms and microbial degradation behavior on plastic surfaces. Polym Mater Sci Eng 67:137–138

    CAS  Google Scholar 

  • O’Leary ND, O’Connor KE, Ward P et al (2005) Genetic characterization and accumulation of polyhydroxyalkanoate from styrene in Pseudomonas putida CA-3. Appl Environ Microbiol 71:4380–4387

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ojumu TV, Solomon BO (2004) Production of polyhydroxyalkanoates, bacterial biodegradable polymer. Afr J Biotechnol 3(1):18–24

    Article  CAS  Google Scholar 

  • Olsen JK, Gounder RK (2001) Alternatives to polyethylene mulch film—a field assessment of transported materials in capsicum (Capsicum annuum L.). Aust J Exp Agric 41:93–103

    Article  Google Scholar 

  • Pachence JM, Bohrer MP, Kohn J et al (2007) Biodegradable polymers. In: Principles of tissue engineering, 3rd edn. Academic, Burlington, pp 323–339

    Chapter  Google Scholar 

  • Pantazaki AA, Tambaka MG, Langlois V et al (2003) Polyhydroxyalkanoate (PHA) biosynthesis in Thermus thermophilus: purification and biochemical properties of PHA synthase. Mol Cell Biochem 254:173–183

    Article  CAS  PubMed  Google Scholar 

  • Parajo Y, d’Angelo I, Horvath A et al (2010) PLGA:poloxamer blend micro- and nanoparticles as controlled release systems for synthetic pro angiogenic factors. Eur J Pharm Sci 41:644–649

    Article  CAS  PubMed  Google Scholar 

  • Park CH, Damodaran VK (1994) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from ethanol and pentanol by Alcaligenes eutrophus. Biotechnol Prog 10:615–620

    Article  CAS  Google Scholar 

  • Perez-Martinez JI, Morillo E, Maqueda C et al (2001) Ethyl cellulose polymer microspheres for controlled release of norflurazon. Pest Manag Sci 57:688

    Article  CAS  PubMed  Google Scholar 

  • Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247

    Article  CAS  Google Scholar 

  • Picuno P, Sica C, Laviano R et al (2012) Experimental tests and technical characteristics of regenerated films from agricultural plastics. Polym Degrad Stab 97:1654–1661

    Article  CAS  Google Scholar 

  • Polakovic M, Gorner T, Gref R et al (1999) Lidocaine loaded biodegradable nanospheres II: modelling of drug release. J Control Release 60:169–177

    Article  CAS  PubMed  Google Scholar 

  • Preusting H, Nijenhuis A, Witholt B (1990) Physical characteristics of poly (3-hydroxyalkanoates) and poly (3-hydroxyalkenoates) produced by Pseudomonas oleovorans grown on aliphatic hydrocarbons. Macromolecules 23:4220–4224

    Article  CAS  Google Scholar 

  • Prudnikova SV, Boyandin AN, Kalacheva GS et al (2013) Degradable polyhydroxyalkanoates as herbicide carriers. J Polym Environ 21:675–682

    Article  CAS  Google Scholar 

  • Qin L, Liu Y, Tay J-H (2005) Denitrification on poly-b-hydroxybutyrate in microbial granular sludge sequencing batch reactor. Water Res 39:1503–1510

    Article  CAS  PubMed  Google Scholar 

  • Ramsay BA, Lomaliza K, Chavarie C et al (1990) Production of poly-(β-hydroxybutyric-co-β-hydroxyvaleric) acids. Appl Environ Microbiol 56:2093–2098

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rao U, Sridhar R, Sehgal PK (2010) Biosynthesis and biocompatibility of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) produced by Cupriavidus necator from spent palm oil. Biochem Eng J 49:13–20

    Article  CAS  Google Scholar 

  • Reddy CSK, Ghai R, Rashmi et al (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146

    Article  CAS  PubMed  Google Scholar 

  • Renner G, Pongratz K, Braunegg G (1996) Production of poly(3-hydroxybutyrate-co-4hydroxybutyrate) by Comamonas testosteronii A3. Food Technol Biotechnol 34:91–95

    CAS  Google Scholar 

  • Rijn JV (1997) Biological removal of inorganic nitrogen and organic matter in closed, intensive fish culture systems. Mod Agric Environ 71:197–213

    Article  Google Scholar 

  • Rijn JV, Tal Y, Schreier HJ (2006) Denitrification in recirculating systems: theory and applications. Aquacult Eng 34:364–376

    Article  Google Scholar 

  • Rudnik E, Briassoulis D (2011) Comparative biodegradation in soil behavior of two biodegradable polymers based on renewable resources. J Polym Environ 19:18–39

    Article  CAS  Google Scholar 

  • Saito Y, Nakamura S, Hiramitsu M et al (1996) Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym Int 39:169–174

    Article  CAS  Google Scholar 

  • Salehizadeh H, Van Loosdreacht MCM (2004) Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol Adv 22:261–279

    Article  CAS  PubMed  Google Scholar 

  • Scarascia MG, Manera C, Margiotta S et al (1997) Mechanical characteristics of recycled plastic posts in agricultural structures. Plasticulture 114(2):5–14

    Google Scholar 

  • Scarascia-Mugnozza G, Schettini E, Vox G (2004) Effects of the solar radiation on the radiometric properties of biodegradable films for agricultural applications. Biosyst Bioeng 87(4):479–487

    Article  Google Scholar 

  • Sendil D, Gursel I, Wise DL et al (1999) Antibiotic release from biodegradable PHBV microparticles. J Control Release 59:207–217

    Article  CAS  PubMed  Google Scholar 

  • Shantini K, Yahya ARM, Amirul AA (2012) Empirical modeling development for integrated process optimization of poly(3-hydrxybutyrate-co-3-hydroxyvalerate) production. J Appl Polym Sci 125:2155–2162

    Article  CAS  Google Scholar 

  • Shogren RL, Hochmuth RC (2004) Field evaluation of water-melon on paper polymerized vegetable oil mulches. Hoticult Sci 39:1588–1591

    Google Scholar 

  • Siew EL, Rajab NF, Osman AB et al (2009) Mutagenic and clastogenic characterization of poststerilized poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer biosynthesized by Delftia acidovorans. J Biomed Mater Res Part A 91:786–794

    Article  CAS  Google Scholar 

  • Sinha VR, Bansal K, Kaushik R et al (2004) Poly-ε-caprolactone microspheres and nanospheres: an overview. Int J Pharm 278:1–23

    Article  CAS  PubMed  Google Scholar 

  • Slater S, Gallaher T, Dennis D (1992) Production of poly(3-hydroxybutyrate-co-3 hydroxyvalerate) in a recombinant Escherichia coli strain. Appl Environ Microbiol 58:1089–1094

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sopeña F, Maqueda C, Morillo E (2007) Norflurazon mobility, dissipation, activity, and persistence in a sandy soil as influenced by formulation. J Agric Food Chem 55:3561–3567

    Article  PubMed  Google Scholar 

  • Sopeña F, Maquesa C, Morillo E (2009) Controlled release formulations of herbicides based on micro- encapsulation. Cien Inv Agr 35:27–42

    Google Scholar 

  • Steinbuchel A (2005) Non biodegradable biopolymers from renewable resources: perspective. Curr Opin Biotechnol 16:607–613

    Article  PubMed  CAS  Google Scholar 

  • Suave J, Dall’Agnol EC, Pezzin APT et al (2010) Biodegradable microspheres of poly(3-hydroxybutyrate)/poly(ε-caprolactone) loaded with malathion pesticide: preparation, characterization, and in vitro controlled release testing. J Appl Polym 117:3419–3427

    CAS  Google Scholar 

  • Sudesh K, Fukui T, Taguchi K et al (1999) Improved production of poly(4-hydroxybutyrate) by Comamonas acidovorans and its freeze-fracture morphology. Int J Biol Macromol 25:79–85

    Article  CAS  PubMed  Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    Article  CAS  Google Scholar 

  • Sujatha K, Mahalakshmi A, Shenbagarathai R (2007) Molecular characterization of Pseudomonas sp. LDC-5 involved in accumulation of poly 3-hydroxybutyrate and medium chain-length poly 3-hydroxyalkanoates. Arch Microbiol 188:451–462

    Article  CAS  PubMed  Google Scholar 

  • Suriyamongkol P, Weselake R, Narine S et al (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—a review. Biotechnol Adv 25:148–175

    Article  CAS  PubMed  Google Scholar 

  • Suyama T, Tokiwa Y, Ouichanpagdee P et al (1998) Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics. Appl Environ Microbiol 64:5008–5011

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tindall JA, Beverly RB, Radcliffe DE (1991) Mulch effect on soil properties and tomato growth using micro-irrigation. Agron J 83:1028–1034

    Article  Google Scholar 

  • Tokiwa Y, Calabia BP (2004) Review degradation of microbial polyesters. Biotechnol Lett 26:1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Tokiwa Y, Suzuki T (1977) Hydrolysis of polyesters by lipases. Nature 270:76–78

    Article  CAS  PubMed  Google Scholar 

  • Tullo AH (2012) Old plastics, fresh dirt. Chem Eng News 90:12–18

    Google Scholar 

  • Valentin HE, Dennis D (1997) Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. J Biotechnol 58:33–38

    Article  CAS  PubMed  Google Scholar 

  • Valentin HE, Zwingmann G, Schonebaum A et al (1995) Metabolic pathway for biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from 4-hydroxybutyrate by Alcaligenes eutrophus. Eur J Biochem 227:43–60

    Article  CAS  PubMed  Google Scholar 

  • Verlinden RAJ, Hill DJ, Kenwards MA et al (2007) Synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449

    Article  CAS  PubMed  Google Scholar 

  • Vigneswari S, Vijaya S, Majid MIA et al (2009) Enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer with manipulated variables and its properties. J Ind Microbiol Biotechnol 36:547–556

    Article  CAS  PubMed  Google Scholar 

  • Voinova ON, Kalacheva GS, Grodnitskaya ID et al (2009) Microbial polymers as a degradable carrier for pesticide delivery. Appl Biochem Microbiol 45:384–388

    Article  CAS  Google Scholar 

  • Volova TG, Gladyshev MI, Trusova MY et al (2007) Degradation of polyhydroxyalkanoates in eutrophic reservoir. Polym Degrad Stab 92:580–586

    Article  CAS  Google Scholar 

  • Volova TG, Zhila NO, Kalacheva GS et al (2011) Synthesis of 3-hydroxybutyrate-co-4-hydroxybutyrate copolymers by hydrogen-oxidizing bacteria. Appl Biochem Microbiol 47:494–499

    Article  CAS  Google Scholar 

  • Wadsworth LC, Hayes DG, Wszelaki AL et al (2012) Evaluation of degradable spun-melt 100% polylactic acid nonwovens mulch materials in a greenhouse environment. J Eng Fiber Fab 8:50–59

    Google Scholar 

  • Wei CH, Zhang X-X, Ren Y, Yu X-B (2013) Biomimetic adsorbents: enrichment of trace amounts of organic contaminants (TAOCs) in aqueous solution. In: Cavrak M (ed) Biomimetic based applications. InTech, Rijeka

    Google Scholar 

  • Yogesh C, Pathak B, Fulekar MH (2012) PHA—production application and its bioremediation in environment. Int Res J Environ Sci 1(2):46–52

    Google Scholar 

  • Zakaria MR, Ariffin H, Johar NAM et al (2010) Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from wild-type Comamonas sp. EB172. Polym Degrad Stab 95:1382–1386

    Article  CAS  Google Scholar 

  • Zhila NO, Volova TG, Nikolaeva ED et al (2011) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymers. J Siberian Fed Univ 2:158–171

    Google Scholar 

  • Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53:5–21

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Amirul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shantini, K., Huong, KH., Ramachandran, H., Amirul, A.A. (2015). Microbial Production of Polyhydroxyalkanoates for Agricultural and Aquacultural Applications. In: Liong, MT. (eds) Beneficial Microorganisms in Agriculture, Aquaculture and Other Areas. Microbiology Monographs, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-23183-9_7

Download citation

Publish with us

Policies and ethics