Skip to main content

From Traditional Knowledge to an Innovative Approach for Bio-preservation in Food by Using Lactic Acid Bacteria

  • Chapter
Beneficial Microorganisms in Food and Nutraceuticals

Part of the book series: Microbiology Monographs ((MICROMONO,volume 27))

Abstract

Fermentation processes have been part of the human food preparation for centuries. Empirical knowledge of these processes has been transmitted from one generation to another and has survived over the years. However, with the establishment of the scientific basis of microbiology, all food fermentation processes have been re-evaluated from the new perspective—the physiological characteristics of lactic acid bacteria. The growth of lactic acid bacteria and production of different metabolites play an essential role not only on the sensorial characteristics of the fermented food products but also in terms of the safety concern. Several antimicrobial metabolites produced by lactic acid bacteria have been described in the literature. Some of them, known as bacteriocins, not only have been explored intensively over the last few decades by the food industry but also have been acknowledged as promising antibacterial compounds with pharmaceutical applications. In this chapter, we will review some of the traditional applications of lactic acid bacteria, showing the importance of antimicrobial metabolites with special focus on antimicrobial proteins (bacteriocins), and discuss some specific cases on its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abriouel H, Lucas R, Ben Omar N, Valdivia E, Maqueda M, Martínez-Cañamero M, Gálvez A (2005) Enterocin AS-48RJ: a variant of enterocin AS-48 chromosomally encoded by Enterococcus faecium RJ16 isolated from food. Syst Appl Microbiol 28(5):383–397

    Article  CAS  PubMed  Google Scholar 

  • Aguirre M, Collins MD (1993) Lactic acid bacteria and human clinical infection. J Appl Bacteriol 75(2):95–107

    Article  CAS  PubMed  Google Scholar 

  • Ahmed Z, Wang Y, Ahmad A, Khan ST, Nisa M, Ahmad H, Afreen A (2013) Kefir and health: a contemporary perspective. Crit Rev Food Sci Nutr 53:422–434

    Article  PubMed  Google Scholar 

  • Arthur TD, Cavera VL, Chikindas ML (2014) On bacteriocin delivery system and potential applications. Future Microbiol 9:235–248

    Article  CAS  PubMed  Google Scholar 

  • Batish VK, Lal R, Grover S (1989) Screening lactic acid starter cultures for antifungal activity. J Cultur Dairy Prod 24:21–25

    Google Scholar 

  • Baumal R, Musclow E, Farkas-Himsley H, Marks A (1982) Variants of an interspecies hybridoma with altered tumorigenicity and protective ability against mouse myeloma tumors. Cancer Res 42(5):1904–1908

    CAS  PubMed  Google Scholar 

  • Belguesmia Y, Choiset Y, Rabesona H, Baudy-Floch M, Le Blay G, Haertlé T, Chobert J-M (2012) Antifungal properties of durancins isolated from Enterococcus durans A5-11 and of its synthetic fragments. Lett Appl Microbiol 56:237–244

    Article  CAS  Google Scholar 

  • Belguesmia Y, Rabesona H, Mounier J, Pawtowsky A, Le Blay G, Barbier G, Haertlé T, Chobert JM (2014) Characterization of antifungal organic acids produced by Lactobacillus harbinensis K.V9.3.1Np immobilized in gellan-xanthan beads during batch fermentation. Food Control 36:205–211

    Article  CAS  Google Scholar 

  • Beresford TP, Fitzsimons NA, Brennan NL, Cogan TM (2001) Recent advances in cheese microbiology. Int Dairy J 11:259–274

    Article  CAS  Google Scholar 

  • Beshkova DM, Simova ED, Simov ZI, Frengova GI, Spasov ZN (2002) Pure cultures for making kefir. Food Microbiol 19:537–544

    Article  Google Scholar 

  • Biscola V, Abriouel H, Todorov SD, Capuano VSC, Gálvez A, Franco BDGM (2014) Effect of autochthonous bacteriocin-producing Lactococcus lactis on bacterial population dynamics and growth of halotolerant bacteria in Brazilian charqui. Food Microbiol 44(1):296–301

    Article  CAS  PubMed  Google Scholar 

  • Blandino A, Al-Aseeri ME, Pandiella SS, Cantero D, Webb C (2003) Cereal-based fermented foods and beverages. Food Res Int 36:527–543

    Article  CAS  Google Scholar 

  • Botes M, van Reenen CA, Dicks LMT (2008) Evaluation of Enterococcus mundtii ST4ST and Lactobacillus plantarum 423 as probiotics by using a gastro-intestinal model with infant milk formulation as substrate. Int J Food Microbiol 128:362–370

    Article  CAS  PubMed  Google Scholar 

  • Brink M, Fraser T, Todorov SD, Vaz-Velho M, Senekal M, Dicks LMT (2003) A combined use of probiotics and prebiotics in a soymilk-based food supplement aimed at improving the gastro-intestinal flora of children with HIV AIDS. Electron J Environ Agric Food Chem 2(4):504–509

    Google Scholar 

  • Broadbent JR, Chou YC, Gillies K, Kondo JK (1989) Nisin inhibits several Gram-positive, mastitis-causing pathogens. J Dairy Sci 72:3342–3345

    Article  CAS  PubMed  Google Scholar 

  • Campbell-Platt G (1994) Fermented foods: a world perspective. Food Res Int 27:253–257

    Article  Google Scholar 

  • Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50:131–149

    Article  CAS  PubMed  Google Scholar 

  • Chuon MR, Shiomoto M, Koyanagi T, Sasaki T, Michihata T, Chan S, Mao S, Enomoto T (2014) Microbial and chemical properties of Cambodian traditional fermented fish products. J Sci Food Agric 94:1124–1131

    Article  CAS  PubMed  Google Scholar 

  • Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71(1):1–20

    Article  CAS  PubMed  Google Scholar 

  • Coallier-Ascah J, Idziak E (1985) Interaction between Streptococcus lactis and Aspergillus flavus on production of aflatoxin. Appl Environ Microbiol 49:163–167

    PubMed Central  CAS  PubMed  Google Scholar 

  • Corsetti A, Gobetti M, Rossi J, Damiani P (1998) Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Appl Microbiol Biotechnol 50:253–256

    Article  CAS  PubMed  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3(10):777–788

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Chamorro L, Puertollano MA, Puertollano E, de Cienfuegos GA, de Pablo MA (2006) In vitro biological activities of magainin alone or in combination with nisin. Peptides 27(6):1201–1209

    Article  CAS  PubMed  Google Scholar 

  • Dalié DKD, Deschamps AM, Richard-Forget F (2010) Lactic acid bacteria – potential for control of mould growth and mycotoxins: a review. Food Control 21:370–380

    Article  CAS  Google Scholar 

  • Danova S, Petrov K, Pavlov P, Petrova P (2005) Isolation and characterization of Lactobacillus strains involved in koumiss fermentation. Int J Dairy Technol 58:100–105

    Article  CAS  Google Scholar 

  • De Oliveira Leite AM, Miguel MA, Peixoto RS, Rosado AS, Silva JT, Paschoalin VMI (2013) Microbiological, technological and therapeutic properties of kefir: a natural probiotic beverage. Braz J Microbiol 44(2):341–349

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • De Vuyst LD, Vandamme EJ (1994) Bacteriocins of lactic acid bacteria: microbiology, genetics and applications. Blackie Academic & Professional, London

    Book  Google Scholar 

  • Delves-Broughton J, Blackburn P, Evans RJ, Hugenholtz J (1996) Application of bacteriocin, nisin. Antonie Van Leeuwenhoek 69:193–202

    Article  CAS  PubMed  Google Scholar 

  • Dierksen KP, Moore CJ, Inglis M, Wescombe PA, Tagg JR (2007) The effect of ingestion of milk supplemented with salivaricin a-producing Streptococcus salivarius on the bacteriocin-like inhibitory activity of streptococcal population on the tongue. FEMS Microbiol Ecol 59:584–591

    Article  CAS  PubMed  Google Scholar 

  • Duffes F (1999) Efficacité de Carnobacterium spp. a inhiber Listeria monocytogenes dans le saumon fumé – Identification de deux proteins impliques dans le résistance de Listeria monocytogenes a la resistance de divercin V41. Ph.D. theisis, Ecole National Superieure Agronomique de Rennes, France

    Google Scholar 

  • Duffes F, Leroi F, Boyaval P, Dousset X (1999) Inhibition of Listeria monocytogenes by Carnobacterium spp. strains in a simulated cold-smocked fish system stored at 4°C. Int J Food Microbiol 47:33–42

    Article  CAS  PubMed  Google Scholar 

  • Duffes F, Corre C, Leroi F, Dousset X, Boyaval P (2000) Inhibition of Listeria monocytogenes by in situ produced and semipurified bacteriocins from Carnobacterium spp. on vacuum-packed refrigerated cold-smoked salmon. J Food Prot 62:1394–1403

    Google Scholar 

  • Effat BA, Ibrahim GA, Tawfik NF, Sharaf OM (2001) Comparison of antifungal activity of metabolites from Lactobacillus rhamnosus, Pediococcus acidilactici and Propionibacterium thoenii. Egypt J Dairy Sci 29:251–262

    Google Scholar 

  • Elsanhoty RM, Salam SA, Ramadan MF, Badr FH (2014) Detoxification of aflatoxin M1 in yoghurt using probiotics and lactic acid bacteria. Food Control 43:129–134

    Article  CAS  Google Scholar 

  • Fadda S, López C, Vignolo G (2010) Role of lactic acid bacteria during meat conditioning and fermentation: peptides generated as sensorial and hygienic biomarkers. Meat Sci 86:66–79

    Article  CAS  PubMed  Google Scholar 

  • FAO/WHO (2001) Report of a Joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria

    Google Scholar 

  • Farias ME, Farias RN, de Ruiz Holgado AP, Sesma F (1996) Purification and N-terminal amino acid sequence of enterocin CRL35, a ‘pediocin-like’ bacteriocin produced by Enterococcus faecium CRL35. Lett Appl Microbiol 22:417–419

    Article  CAS  PubMed  Google Scholar 

  • Farkas-Himsley H, Yu H (1985) Purified colicin as cytotoxic agent of neoplasia: comparative study with crude colicin. Cytobios 42(167–168):193–207

    CAS  PubMed  Google Scholar 

  • Farkas-Himsley H, Freedman J, Read SE, Asad S, Kardish M (1991) Bacterial proteins cytotoxic to HIV-1-infected cells. AIDS 5(7):905–907

    Article  CAS  PubMed  Google Scholar 

  • Farkas-Himsley H, Hill R, Rosen B, Arab S, Lingwood CA (1995) The bacterial colicin active against tumor cells in vitro and in vivo is verotoxin 1. Proc Natl Acad Sci USA 92(15):6996–7000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Favaro L, Penna ALB, Todorov SD (2015) Bacteriocinogenic LAB from cheeses - application in biopreservation? Trends Food Sci Technol 41(1):37–48

    Article  CAS  Google Scholar 

  • Férir G, Petrova MI, Andrei G, Huskens D, Hoorelbeke B, Snoeck R, Vanderleyden J, Balzarini J, Bartoschek S, Brönstrup M, Süssmuth RD, Schols D (2013) The lantibiotic peptide labyrinthopeptin A1 demonstrates broad anti-HIV and anti-HSV activity with potential for microbicidal applications. PLoS One 8(5):e64010. doi:10.1371/journal.pone.0064010

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Filip JC, Bowe WP, DiRienzo JM, Volgina A, Margolis DJ (2006) Inhibition of Propionibacterium acnes by bacteriocin-like inhibitory substances (BLIS) produced by Streptococcus salivarius. J Drugs Dermatol 5:868–871

    PubMed Central  PubMed  Google Scholar 

  • Fleet GH (1999) Microorganisms in food ecosystems. Int J Food Microbiol 50:101–117

    Article  CAS  PubMed  Google Scholar 

  • Florianowicz T (2001) Antifungal activity of some microorganisms against Penicillium expansum. Eur Food Res Technol 212:282–286

    Article  CAS  Google Scholar 

  • Fox PF, Wallace JM (1997) Formation of flavor compounds in cheese. Adv Appl Microbiol 45:17–85

    Article  CAS  PubMed  Google Scholar 

  • Fuller R, Gibson GR (1997) Modification of the intestinal microflora using probiotics and prebiotics. Scand J Gastroenterol 32:28–31

    Google Scholar 

  • Furtado DN, Todorov SD, Landgraf M, Destro MT, Franco BDGM (2014) Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: characterization of the bacteriocin. Braz J Microbiol 45(4):1541–1550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Furtado DN, Todorov SD, Landgraf M, Destro MT, Franco BDGM (2015) Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: application in the control of Listeria monocytogenes in fresh Minas-type goat cheese. Braz J Microbiol. 41(1):201-206.

    Article  Google Scholar 

  • García P, Rodríguez L, Rodríguez A, Martínez B (2010) Food biopreservation: promising strategies using bacteriocins, bacteriophages and endolysins. Trends Food Sci Technol 21(8):373–382

    Article  CAS  Google Scholar 

  • Goff JH, Bhunia AK, Johnson MG (1996) Complete inhibition of low levels of Listeria monocytogenes on refrigerated chicken meat with pediocin AcH bound to heat-killed Pediococcus acidilactici cells. J Food Prot 59:1187–1192

    Google Scholar 

  • Gourama H (1997) Inhibition of growth and mycotoxin production of Penicillium by Lactobacillus species. Lebensmittel-Wissenchaft Technol 30:279–283

    Article  CAS  Google Scholar 

  • Gratz S, Mykkänen H, Ouwehand AC, Juvonen R, Salminen S, El-Nezami H (2004) Intestinal mucus alters the ability of probiotic bacteria to bind aflatoxin B1 in vitro. Appl Environ Microbiol 70:6306–6308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hassan YI, Bullerman LB (2008) Antifungal activity of Lactobacillus paracasei ssp. tolerans isolated from a sourdough bread culture. Int J Food Microbiol 121(1):112–115

    Article  CAS  PubMed  Google Scholar 

  • Heng NC, Wescombe PA, Burton JP, Jack RW, Tagg JR (2007) The diversity of bacteriocins in Gram-positive bacteria. In: Bacteriocins. Springer, Berlin, pp 45–92

    Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Stanely JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams & Wilkins, Baltimore, MD

    Google Scholar 

  • Huttunen E, Noro K, Yang Z (1995) Purification and identification of antimicrobial substance produced by two Lactobacillus casei strains. Int Dairy J 5:503–513

    Article  CAS  Google Scholar 

  • ISAPP (2009) Clarification of the definition of a probiotic of the International Scientific Association for Probiotics and Prebiotics (online). http://www.isapp.net/Portals/0/docs/ProbioticDefinitionClarification.pdf. Accessed 14 Dec 2014

  • Jacome SL, Fonseca S, Pinheiro R, Todorov S, Noronha L, Silva J, Gomes A, Pintado M, Morais AMMB, Teixeira P, Vaz-Velho M (2014) Effect of lactic acid bacteria on quality and safety of ready-to-eat sliced cured/smoked meat products. Chem Eng Trans 38:403–408

    Google Scholar 

  • Johansen C, Gill T, Gram L (1996) Changes in cell morphology of Listeria monocytogenes and Shewanella putrefaciens resulting from the action of protamine. Appl Environ Microbiol 62:1058–1064

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jozala AF, De Andrade MS, De Arauz LJ, Oessoa A Jr, Penna TCV (2007) Nisin production utilizing skimmed milk aiming to reduce process cost. Appl Biochem Biotechnol 137–140:515–528

    PubMed  Google Scholar 

  • Kabak B, Dobson ADW (2011) An introduction to the traditional fermented foods and beverages of Turkey. Crit Rev Food Sci Nutr 51:248–260

    Article  PubMed  Google Scholar 

  • Kassaa IA, Hober D, Hamze M, Chihib NE, Drider D (2014) Antiviral potential of lactic acid bacteria and their bacteriocins. Probiot Antimicrob Proteins 6:177–185

    Article  CAS  Google Scholar 

  • Kaur B, Balgir P, Mittu B, Chauhan A, Kumar B (2013) Purification and physicochemical characterization of anti-Gardnerella vaginalis bacteriocin HV6b produced by Lactobacillus fermentum isolate from human vaginal ecosystem. Am J Biochem Mol Biol 3:91–100

    Article  CAS  Google Scholar 

  • Kellner R, Jung G, Horner T, Zahner H, Schnell N, Entian KD, Gotz F (1988) Gallidermin: a new lanthionine-containing polypeptide antibiotic. Eur J Biochem 177:53–59

    Article  CAS  PubMed  Google Scholar 

  • Klaenhammer TR (1993) Genetics of bacteriocin produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–85

    Article  CAS  PubMed  Google Scholar 

  • Kruszewska D, Sahl HG, Bierbaum G, Pag U, Hynes SO, Ljungh A (2004) Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J Antimicrob Chemother 54:648–653

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Sandoe J, Kumar N (2005) Three cases of vertebral osteomyelitis caused by Streptococcus dysgalactiae subsp. equisimilis. J Med Microbiol 54:1103–1105

    Article  PubMed  Google Scholar 

  • Lavermicocca P, Valerio F, Evidente A, Lazzaroni S, Corsetti A, Gobetti M (2000) Purification and characterization of novel antifungal compounds from sourdough Lactobacillus plantarum strain 21 B. Appl Environ Microbiol 66:4084–4090

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lawton EM, Ross RP, Hill C, Cotter PD (2007) Two-peptide lantibiotics: a medical perspective. Minirev Med Chem 7:1236–1247

    Article  CAS  Google Scholar 

  • LeBlanc JG, Todorov SD (2011) Bacteriocin producing lactic acid bacteria isolated from Boza, a traditional fermented beverage from Balkan Peninsula – from isolation to application. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Microbiology Book Series, no 3, vol 2. Formatex Research Center, Badajos, pp 1311–1320

    Google Scholar 

  • LeBlanc JG, Todorov SD, de LeBlanc AM (2015) Beneficial effects of microorganisms isolated from papaya. In: Todorov SD, Ivanova IV (eds) Tropical fruits – from cultivation to consumption and health benefits: papaya. Nova Publisher, New York, pp 105–118

    Google Scholar 

  • Legan JD (1993) Mould spoilage of bread: the problem and some solutions. Int Biodeterior Biodegrad 32:33–53

    Article  Google Scholar 

  • Leisner JJ, Greer GG, Dilts BD, Stiles ME (1995) Effect of growth of selected lactic acid bacteria on storage life of beef stored under vacuum and in air. Int J Food Microbiol 26:231–243

    Article  CAS  PubMed  Google Scholar 

  • Lindgren S, Dobrogosz W (1990) Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol Rev 87:149–163

    Article  CAS  Google Scholar 

  • Liua W, Zhanga L, Yia H, Shib J, Xuea C, Lia H, Jiaoa Y, Shigwedhaa N, Dua M, Hana X (2014) Qualitative detection of class IIa bacteriocinogenic lactic acid bacteria from traditional Chinese fermented food using a YGNGV-motif-based assay. J Microbiol Methods 100(1):121–127

    Article  CAS  Google Scholar 

  • Luchese RH, Harrigan WF (1990) Growth of and aflatoxin production by Aspergillus parasiticus when in the presence of either Lactococcus lactis or lactic acid and at different initial pH values. J Appl Bacteriol 69:512–519

    Article  CAS  PubMed  Google Scholar 

  • Magnusson J, Schnürer J (2001) Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Appl Environ Microbiol 67:1–5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Magnusson J, Ström K, Roos S, Sjögren J, Schnürer J (2003) Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiol Lett 219:129–135

    Article  CAS  PubMed  Google Scholar 

  • Mandal V, Sen SK, Mandal NC (2007) Detection, isolation and partial characterization of antifungal compound(s) produced by Pediococcus acidilactici LAB 5. Nat Prod Commun 2:671–674

    CAS  Google Scholar 

  • Masuda Y, Ono H, Kitagawa H, Ito H, Mu F, Sawa N et al (2011) Identification and characterization of leucocyclicin Q, a novel cyclic bacteriocin produced by Leuconostoc mesenteroides TK41401. Appl Environ Microbiol 77(22):8164–8170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mäyrä-Mäkinen A, Suomalainen T (1995) Lactobacillus casei subsp. rhamnosus, bacterial preparations comprising said strain, and use of said strain and preparations for the controlling of yeast and moulds. US Patent 5378458. http://fi.espacenet.com

  • Mäyrä-Mäkinen A, Suomalainen T (1996) Inhibition of clostridium with lactic acid bacteria. EP Patent 0698347. http://fi.espacenet.com

  • Mäyrä-Mäkinen AK, Kristianinkatu A, Suomalainen TV (1994) A novel microorganism strain, bacterial preparations comprising said strain, and use of said strain preparations for the controlling of yeasts and moulds. European Patent Application, 0,576,780, A2

    Google Scholar 

  • McMuller LM, Stiles ME (1996) Potential use of bacteriocin producing lactic acid bacteria in the preservation of meats. J Food Prot (Suppl) 64–71

    Google Scholar 

  • Metha B, Kamal-Eldin A, Iwanski RZ (2012) Fermentation effects on food properties. CRC, Boca Raton, FL

    Google Scholar 

  • Miao J, Guo H, Ou Y, Liu G, Fang X, Liao Z, Ke C, Chen Y, Zhao L, Cao Y (2014) Purification and characterization of bacteriocin F1, a novel bacteriocin produced by Lactobacillus paracasei subsp. tolerans FX-6 from Tibetan kefir, a traditional fermented milk from Tibet, China. Food Control 42:48–53

    Article  CAS  Google Scholar 

  • Minahk CJ, Dupuy F, Morero RD (2004) Enhancement of antibiotic activity by sub-lethal concentrations of enterocin CRL35. J Antimicrob Chemother 53:240–246

    Article  CAS  PubMed  Google Scholar 

  • Mokua RA (2004) Effect of Kenyan fermented milk on Escherichia coli. The Graduation College University of Wisconsin-Stout, Menomonie, WI, 51p

    Google Scholar 

  • Montalbán-López M, Sánchez-Hidalgo M, Valdivia E, Martínez-Bueno M, Maqueda M (2011) Are bacteriocins underexploited? Novel applications for old antimicrobials. Curr Pharm Biotechnol 12:1205–1220

    Article  PubMed  Google Scholar 

  • Moretti VA, Madonia G, Diaferia C, Mentasti T, Paleari MA, Panseri S, Pirone G, Gandini G (2004) Chemical and microbiological parameters and sensory attributes of a typical Sicilian salami ripened in different conditions. Meat Sci 66:845–854

    Article  CAS  PubMed  Google Scholar 

  • Musclow CE, Farkas-Himsley H, Weitzman SS, Herridge M (1987) Acute lymphoblastic leukemia of childhood monitored by bacteriocin and flow cytometry. Eur J Cancer Clin Oncol 23(4):411–418

    Article  CAS  PubMed  Google Scholar 

  • Myoshi A, Florence ACR, Silva RC, Pontes D, Chatel JM, Serror P, Langella P, Azevedo V, Oliveira MN (2009) Uso Biotecnológico De Bactérias Lácticas Como Probióticos, Para A Produção De Proteínas Heterólogas E Como Vetores De DNA. Microbiologia in Foco 1:7

    Google Scholar 

  • Nascimento JS, Ceotto H, Nascimento SB, Giambiagi-Demarval M, Santos KR, Bastos MC (2006) Bacteriocins as alternative agents for control of multiresistant staphylococcal strains. Lett Appl Microbiol 42:215–221

    Article  CAS  PubMed  Google Scholar 

  • Nielsen B, Gürakan GG, Ünlü G (2014) Kefir: a multifaceted fermented dairy product. Probiotics Antimicrob Proteins 6:123–135

    Article  CAS  PubMed  Google Scholar 

  • Niku-Paavola ML, Laitila A, Mattila-Sandholm T, Haikara A (1999) New types of antimicrobial compound produced by Lactobacillus plantarum. J Appl Microbiol 86:29–35

    Article  CAS  PubMed  Google Scholar 

  • O’Connor EB, O’Riordan B, Morgan SM, Whelton H, O’Mullane DM, Ross RP, Hill C (2006) A lactacin 3147 enriched food ingredient reduces Streptococcus mutans isolated from the human oral cavity in saliva. J Appl Microbiol 100:1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Oetterer M (2014) USP/ESALQ/LAN-662. The process of seafood brew (Anchovamento). www.esalq.usp.br/departamentos/…/Fermentacao%20do%20pescado.pdf. Accessed 15 Dec 2014

  • Okkers DJ, Dicks LM, Silvester M, Joubert JJ, Odendaal HJ (1999) Characterization of pentocin TV35b, a bacteriocin-like peptide isolated from Lactobacillus pentosus with a fungistatic effect on Candida albicans. J Appl Microbiol 87:726–734

    Article  CAS  PubMed  Google Scholar 

  • Okuda K, Zendo T, Sugimoto S, Iwase T, Tajima A, Yamada S, Sonomoto K, Mizunoe Y (2013) Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob Agents Chemother 57:5572–5579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oliveira MN (2009) Tecnologia de produtos lácteos funcionais. Ed Atheneu, Sao Paulo

    Google Scholar 

  • Parente E, Ricciardi A (1994) Influence of pH on the production of enterocin 1146 during batch fermentation. Lett Appl Microbiol 19:12–15

    Article  CAS  PubMed  Google Scholar 

  • Parente E, Ricciardi A, Addario G (1994) Influence of pH on growth and bacteriocin production by Lactococcus lactis subsp. lactis 140VWC during batch fermentation. Appl Microbiol Biotechnol 41:388–394

    CAS  Google Scholar 

  • Patrzykat A, Friedrich CL, Zhang LJ, Mendoza V, Hancock REW (2002) Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 46:605–614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paula AT, Jeronymo-Ceneviva AB, Silva LF, Todorov SD, Franco BDGM, Choiset Y, Chobert J-M, Haertlé T, Xavier D, Penna ALB (2014) Leuconostoc mesenteroides: bacteriocinogenic strain isolated from Brazilian water-buffalo mozzarella cheese. Probiot Antimicrob Proteins 6(3-4):186–197

    Article  CAS  Google Scholar 

  • Peteán M, Beccarí A, Burns AP, Sihufe G, Zacarías MF, Binetti A, Reinheimer J, Vinderola G (2014) Influence of technological variables on the functionality of the cell-free fraction of fermented buttermilk. Int J Dairy Technol 67:39–46

    Article  CAS  Google Scholar 

  • Pieterse R, Todorov SD, Dicks LMT (2010) Mode of action and in vitro susceptibility of mastitis pathogens to macedocin ST91KM and preparation of a teat seal containing the bacteriocin. Braz J Microbiol 41(1):133–145

    Article  PubMed Central  PubMed  Google Scholar 

  • Pingitore EV, Todorov SD, Sesma F, Franco BDGM (2012) Application of bacteriocinogenic Enterococcus mundtii CRL35 and Enterococcus faecium ST88Ch in the control of Listeria monocytogenes in fresh Minas cheese. Food Microbiol 32(1):38–47

    Article  Google Scholar 

  • Pongtharangkul T, Demirci A (2004) Evaluation of agar diffusion bioassay for nisin quantification. Appl Microbiol Biotechnol 65(3):268–272

    Article  CAS  PubMed  Google Scholar 

  • Powell JE, Todorov SD, Van Reenen CA, Dicks LMT, Witthuhn RC (2006) Growth inhibition of Enterococcus mundtii in Kefir by in situ production of bacteriocin ST8KF. LeLait 86:1–5

    Article  CAS  Google Scholar 

  • Powell JE, Witthuhn RC, Todorov SD, Dicks LMT (2007) Characterization of bacteriocin ST8KF produced by a kefir isolate Lactobacillus plantarum ST8KF. Int Dairy J 17:190–198

    Article  CAS  Google Scholar 

  • Reis JA, Paula AT, Casarotti SN, Penna ALB (2012) Lactic acid bacteria antimicrobial compounds: characteristics and applications. Food Eng Rev 4(2):124–140

    Article  CAS  Google Scholar 

  • Ribeiro SC, Costa MC, Todorov SD, Franco BDGM, Dapkevicius MLE, Silva CCG (2014) Characterization of bacteriocin-producing bacteria isolated from Pico Cheese an artisanal cow´s milk cheese. J Appl Microbiol 116(3):573–585

    Article  CAS  PubMed  Google Scholar 

  • Röcken W (1996) Applied aspects of sourdough fermentation. Adv Food Sci 18:212–216

    Google Scholar 

  • Röcken W, Voysey PA (1995) Sourdough fermentation in bread making. J Appl Bacteriol 79:38S–48S

    Article  Google Scholar 

  • Rodrigues KL, Caputo LRG, Carvalho JCT, Evangelista J, Schneedorf JM (2005) Antimicrobial and healing activity of kefir and kefiran extract. Int J Antimicrob Agents 25:404–408

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez JL, Gaya P, Medina M, Nunez M (1997) Bactericidal effect of enterocin 4 on Listeria monocytogenes in a model dairy system. J Food Prot 60:28–32

    CAS  PubMed  Google Scholar 

  • Ross RP, Morgan S, Hill C (2002) Preservation a fermentation: past, present and future. Int J Food Microbiol 79:3–16

    Article  CAS  PubMed  Google Scholar 

  • Rouse S, Harnett D, Vaughan A, van Sinderen D (2008) Lactic acid bacteria with potential to eliminate fungal spoilage in foods. J Appl Microbiol 104:915–923

    Article  CAS  PubMed  Google Scholar 

  • Roy U, Batish VK, Grover S, Neelakantan S (1996) Production of antifungal substance by Lactococcus lactis subsp. lactis CHD-28.3. Int J Food Microbiol 32:27–34

    Article  CAS  PubMed  Google Scholar 

  • Ryan MP, Jack RW, Josten M, Sahl HG, Jung G, Ross RP, Hill C (1999) Extensive post-translational modifications, including serine to D-alanine conversion, in the two-component lantibiotic, lactacin 3147. J Biol Chem 274:37544–37550

    Article  CAS  PubMed  Google Scholar 

  • Sahl HG, Jack RW, Bierbaum G (1995) Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. Eur J Biochem 230:827–853

    Article  CAS  PubMed  Google Scholar 

  • Saito H, Watanabe T, Osasa S, Tado O (1979) Susceptibility of normal and tumor cells to mycobacteriocin and mitomycin C. Hiroshima J Med Sci 28(3):141–146

    CAS  PubMed  Google Scholar 

  • Salvucci E, Hebert EM, Sesma F, Saavedra L (2010) Combined effect of synthetic enterocin CRL35 with cell wall, membrane-acting antibiotics and muranolytic enzymes against Listeria cells. Lett Appl Microbiol 51:191–195

    CAS  PubMed  Google Scholar 

  • Sand SL, Haug TM, Nissen-Meyer J, Sand O (2007) The bacterial peptide pheromone plantaricin A permeabilizes cancerous, but not normal, rat pituitary cells and differentiates between the outer and inner membrane leaflet. J Membr Biol 216(2–3):61–71

    Article  CAS  PubMed  Google Scholar 

  • Sathe SJ, Nawani NN, Dhakephalkar PK, Kapadnis BP (2007) Antifungal lactic acid bacteria with potential to prolong shelf-life of fresh vegetables. J Appl Microbiol 103:2622–2628

    Article  CAS  PubMed  Google Scholar 

  • Schirru S, Todorov SD, Favaro L, Mangia NP, Basaglia M, Casella S, Comunian R, Franco BDGM, Deiana P (2012) Sardinian goat’s milk as source of bacteriocinogenic potential protective cultures. Food Control 25(1):309–320

    Article  CAS  Google Scholar 

  • Schirru S, Favaro L, Mangia NP, Basaglia M, Casella S, Comunian R, Fancello F, Franco BDGM, Oliveira RPS, Todorov SD (2014) Comparison of bacteriocins production from Enterococcus faecium strains in cheese whey and optimised commercial MRS medium. Ann Microbiol 64(1):321–331

    Article  CAS  Google Scholar 

  • Schnürer J, Magnusson J (2005) Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci Technol 16:70–78

    Article  CAS  Google Scholar 

  • Schoeman H, Vivier MA, Du Toit M, Dicks LMT, Pretorius IS (1999) The development of bactericidal yeast strains by expressing the Pediococcus acidilactici pediocin gene (pedA) in Saccharomyces cerevisiae. Yeast 15:647–656

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Handa S, Gupta A (2013) A comprehensive study of different traditional fermented foods/beverages of 21 himachal pradesh to evaluate their nutrition impact on health and rich biodiversity of fermenting microorganisms. Int J Res Appl Nat Social Sci 1(3):19–28

    Google Scholar 

  • Shiby VK, Mishra HN (2013) Fermented milks and milk products as functional foods – a review. Crit Rev Food Sci Nutr 53(5):482–496

    Article  CAS  PubMed  Google Scholar 

  • Simova E, Beshkova D, Angelov A, Hristozova T, Frengova G, Spasov Z (2002) Lactic acid bacteria and yeasts in kefir grains and kefir made from them. J Ind Microbiol Biotechnol 28:1–6

    Article  CAS  PubMed  Google Scholar 

  • Smaoui S, Elleuch L, Bejar W, Karray-Rebai I, Ayadi I, Jaouadi B, Mathieu F, Chouayekh H, Bejar S, Mellouli L (2010) Inhibition of fungi and Gram-negative bacteria by bacteriocin BacTN635 produced by Lactobacillus plantarum sp. TN635. Appl Biochem Biotechnol 162:1132–1146

    Article  CAS  PubMed  Google Scholar 

  • Sobrino-López A, Martín-Belloso O (2008) Use of nisin and other bacteriocins for preservation of dairy products. Int Dairy J 18(4):329–343

    Article  CAS  Google Scholar 

  • Stecchini ML, Aquilli V, Sarai I (1995) Behaviour of Listeria monocytogenes in mozzarella cheese in presence of Lactococcus lactis. Int J Food Microbiol 25:301–310

    Article  CAS  PubMed  Google Scholar 

  • Stiles ME (1996) Biopreservation by lactic acid bacteria. Antonie van Leeuwenhoek 70:331–345

    Article  CAS  PubMed  Google Scholar 

  • Stiles EM, Holzapfel WH (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36(1):1–2

    Article  CAS  PubMed  Google Scholar 

  • Stiles J, Penkar S, Plockova N, Chumchalova J, Bullerman LB (2002) Antifungal activity of sodium acetate and Lactobacillus rhamnosus. J Food Prot 65:1188–1191

    CAS  PubMed  Google Scholar 

  • Stoyanova LG, Ustyugova EA, Sultimova TD, Bilanenko EN, Fedorova GB, Khatrukha GS, Netrusov AI (2010) New antifungal bacteriocin-synthesizing strains of Lactococcus lactis ssp. lactis as the perspective biopreservatives for protection of raw smoked sausages. Am J Agric Biol Sci 5:477–485

    Article  CAS  Google Scholar 

  • Ström K, Sjögren J, Broberg A, Schnürer J (2002) Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phe-trans-4-OH-L-Pro) and phenyllactic acid. Appl Environ Microbiol 68:4322–4327

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Suzuki I, Nomura M, Morichi T (1991) Isolation of lactic acid bacteria which suppress mold growth and show antifungal action. Milchwissenschaft 46:635–639

    Google Scholar 

  • Taira W, Funatsu Y, Satomi M, Takano T, Abe H (2007) Changes in extractive components and microbial proliferation during fermentation of fish sauce from underutilized fish species and quality of final products. Fish Sci 73:913–923

    Article  CAS  Google Scholar 

  • Talon R, Leroy S, Lebert I (2007) Microbial ecosystems of traditional fermented meat products: the importance of indigenous starters. Meat Sci 77:55–62

    Article  CAS  PubMed  Google Scholar 

  • Tamime AY (2007) Fermented milk. Wiley-Blackwell, New York

    Google Scholar 

  • Tamime AY, Robson RK (1999) Yogurt: science and technology, 2nd edn. CRC, Boca Raton, FL

    Google Scholar 

  • Tamime AY, Muir DD, Wszolek M (1999) Kefir, koumiss and kishk. Dairy Ind Int 64:32–33

    Google Scholar 

  • Todorov SD (2008) Bacteriocin production by Lactobacillus plantarum AMA-K isolated from Amasi, a Zimbabwean fermented milk product and study of adsorption of bacteriocin AMA-K to Listeria spp. Braz J Microbiol 38(1):178–187

    Article  Google Scholar 

  • Todorov SD (2010) Diversity of bacteriocinogenic lactic acid bacteria isolated from boza, a cereal-based fermented beverage from Bulgaria. Food Control 21:1011–1021

    Article  CAS  Google Scholar 

  • Todorov SD, Dicks LMT (2006a) Parameters affecting the adsorption of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum 423 isolated from sorghum beer. Biotechnol J 1(4):405–409

    Article  CAS  PubMed  Google Scholar 

  • Todorov SD, Dicks LMT (2006b) Screening for bacteriocin producer lactic acid bacteria from boza, a traditional cereal beverage from Bulgaria. Characterization of produced bacteriocins. Process Biochem 41(1):11–19

    Article  CAS  Google Scholar 

  • Todorov SD, Dicks LMT (2009) Bacteriocin production by Pediococcus pentosaceus isolated from marula (Scerocarya birrea). Int J Food Microbiol 132(2–3):117–126

    Article  CAS  PubMed  Google Scholar 

  • Todorov SD, Holzapfel WH (2015) Traditional cereal fermented foods as sources of functional (bacteriocinogenic and probiotic) microorganisms. In: Holzapfel WH (ed) Advances in fermented foods and beverages: improving quality, technologies and health benefits. Woodhead, London, pp 123–153

    Google Scholar 

  • Todorov SD, Wachsman MB, Knoetze H, Meincken M, Dicks LMT (2005) An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4V isolated from soy beans. Int J Antimicrob Agents 25(6):508–513

    Article  CAS  PubMed  Google Scholar 

  • Todorov SD, Danova ST, Van Reenen CA, Meincken M, Dinkova G, Ivanova IV, Dicks LMT (2006) Characterization of bacteriocin HV219, produced by Lactococcus lactis subsp. lactis HV219 isolated from human vaginal secretions. J Basic Microbiol 46(3):226–238

    Article  CAS  PubMed  Google Scholar 

  • Todorov SD, Botes M, Danova ST, Dicks LMT (2007a) Probiotic properties of Lactococcus lactis subsp. lactis HV219, isolated from human vaginal secretions. J Appl Microbiol 103(3):629–639

    Article  CAS  PubMed  Google Scholar 

  • Todorov SD, Koep KSC, Van Reenen CA, Hoffman LC, Slinde E, Dicks LMT (2007b) Production of salami from beef, horse, mutton, blesbok (Damaliscus dorcas phillipsi) and springbok (Antidorcas marsupialis) with bacteriocinogenic strains of Lactobacillus plantarum and Lactobacillus curvatus. Meat Sci 77(3):405–412

    Article  CAS  PubMed  Google Scholar 

  • Todorov SD, van Reenen CA, Dicks LMT (2007c) Pre-treatment of growth medium with Amberlite® XAD-1180 produces higher levels of bacteriocin plantaricin 423. Cent Eur J Biol 2(4):588–596

    CAS  Google Scholar 

  • Todorov SD, Botes M, Guigas C, Schillinger U, Wiid I, Wachsman MB, Holzapfel WH, Dicks LMT (2008) Boza, a natural source of probiotic lactic acid bacteria. J Appl Microbiol 104(2):465–477

    CAS  PubMed  Google Scholar 

  • Todorov SD, von Mollendorff JW, Moelich E, Muller N, Witthuhn RC, Dicks LMT (2009) Evaluation of potential probiotic properties of Enterococcus mundtii, its survival in boza and in situ bacteriocin production. Food Technol Biotechnol 47(2):178–191

    CAS  Google Scholar 

  • Todorov SD, Ho P, Vaz-Velho M, Dicks LMT (2010a) Characterization of bacteriocins produced by two strains of Lactobacillus plantarum isolated from Beloura and Chouriço, traditional pork products from Portugal. Meat Sci 84(3):334–343

    Article  CAS  PubMed  Google Scholar 

  • Todorov SD, Wachsman M, Tomé E, Dousset X, Destro MT, Dicks LMT, Franco BDGM, Vaz-Velho M, Drider D (2010b) Characterisation of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiol 27(7):869–879

    Article  CAS  PubMed  Google Scholar 

  • Todorov SD, Vaz-Velho M, Franco BDGM, Holzapfel WH (2013) Partial characterization of bacteriocins produced by three strains of Lactobacillus sakei, isolated from salpicao, a fermented meat product from North-West of Portugal. Food Control 30(1):111–121

    Article  CAS  Google Scholar 

  • Todorov SD, Franco BDGM, Wiid IJ (2014) In vitro study of beneficial properties and safety of lactic acid bacteria isolated from Portuguese fermented meat products. Benef Microbes 5(3):351–366

    Article  CAS  PubMed  Google Scholar 

  • Torres AM, Menz I, Alewood PF, Bansal P, Lahnstein J, Gallagher CH, Kuchel PW (2002) D-amino acid residue in the C-type natriuretic peptide from the venom of the mammal, Ornithorhynchus anatinus, the Australian platypus. FEBS Lett 524:172–176

    Article  CAS  PubMed  Google Scholar 

  • Twomey D, Ross RP, Ryan M, Meaney B, Hill C (2002) Lantibiotics produced by lactic acid bacteria: structure, function and applications. Antonie Van Leeuwenhoek 82:165–185

    Article  CAS  PubMed  Google Scholar 

  • Van Reenen CA, Dicks LMT, Chikindas ML (1998) Isolation, purification and partial characterization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum. J Appl Microbiol 84:1131–1137

    Article  PubMed  Google Scholar 

  • Van Reenen CA, Chikindas ML, Van Zyl WH, Dicks LMT (2003) Characterization and heterologous expression of a class IIa bacteriocin, plantaricin 423 from Lactobacillus plantarum 423, in Saccharomyces cerevisiae. Int J Food Microbiol 81:29–40

    Article  PubMed  Google Scholar 

  • van Wyk J, Witthuhn RC, Britz TJ (2011) Optimisation of Vitamin B12 and folate production by Propionibacterium freudenreichii strains in kefir. Int Dairy J 21:69–74

    Article  CAS  Google Scholar 

  • Vaz-Velho M, Todorov S, Ribeiro J, Gibbs P (2005) Evaluation of Carnobacterium divergens V41 and supernatant V41 abilities for reducing Listeria innocua 2030c numbers during processing and storage of cold-smoked salmon trout. Food Control 16(6):541–549

    Article  Google Scholar 

  • Verellen TLJ, Bruggeman G, Van Reenen CA, Dicks LMT, Vandamme EJ (1998) Fermentation optimisation of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum 423. J Ferment Bioeng 86:174–179

    Article  CAS  Google Scholar 

  • Von Mollendorff JW, Todorov SD, Dicks LMT (2006) Comparison of bacteriocins produced by lactic acid bacteria isolated from boza, a cereal-based fermented beverage from the Balkan Peninsula. Curr Microbiol 53(3):209–216

    Article  CAS  Google Scholar 

  • Von Mollendorff JW, Todorov SD, Dicks LMT (2009) Optimization of growth medium for production of bacteriocins produced by Lactobacillus plantarum JW3BZ and JW6BZ, and Lactobacillus fermentum JW11BZ and JW15BZ isolated from boza. Trakia J Sci 7(1):22–33

    Google Scholar 

  • Voulgari K, Hatzikamari M, Delepoglou A, Georgakopoulos P, Litopoulou-Tzanetaki E, Tzanetakis N (2010) Antifungal activity of non-starter lactic acid bacteria isolates from dairy products. Food Control 21:136–142

    Article  CAS  Google Scholar 

  • Wachsman MB, Farias ME, Takeda E, Sesma F, De Ruiz Holgado AP, de Torres RA, Coto CE (1999) Antiviral activity of enterocin CRL35 against herpes virus. Int J Antimicrob Agents 12:293–299

    Article  CAS  PubMed  Google Scholar 

  • Wachsman MB, Castilla V, De Ruiz Holgado AP, de Torres RA, Sesma F, Coto CE (2003) Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antivir Res 58:17–24

    Article  CAS  PubMed  Google Scholar 

  • Wang LL, Johnsonm EA (1997) Control of Listeria monocytogenes by monoglycerides in food. J Food Prot 60:131–138

    CAS  Google Scholar 

  • Wang J, Chen X, Liu W, Yang M, Zhang H (2008) Identification of Lactobacillus from koumiss by conventional and molecular methods. Eur Food Res Technol 227:1555–1561

    Article  CAS  Google Scholar 

  • Wescombe PA, Upton M, Dierksen KP, Ragland NL, Sivabalan S, Wirawan RE, Inglis MA, Moore CJ, Walker GV, Chilcott CN, Jenkinson HF, Tagg JR (2006) Production of the lantibiotic salivaricin A and its variants by oral streptococci and use of a specific induction assay to detect their presence in human saliva. Appl Environ Microbiol 72:1459–1466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wiedemann I, Breukink E, van Kraaij C, Kuipers OP, Bierbaum G, de Kruijff B, Sahl HG (2001) Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 276(3):1772–1779

    Article  CAS  PubMed  Google Scholar 

  • Wiseman DW, Marth EH (1981) Growth and aflatoxin production by Aspergillus parasiticus when in the presence of Streptococcus lactis. Mycopathologia 73:49–56

    Article  CAS  PubMed  Google Scholar 

  • Wouters JTM, Ayad EHE, Hugenholtz J, Smit G (2002) Microbes from raw milk for fermented dairy products. Int Dairy J 12:91–109

    Article  CAS  Google Scholar 

  • Yang Z, Suomalainen T, Mäyrä-Mäkinen A, Huttunen E (1997) Antimicrobial activity of 2-pyrrolidone-5-carboxylic acid produced by lactic acid bacteria. J Food Prot 60:786–790

    CAS  Google Scholar 

  • Zaoutis T, Attia M, Gross R, Klein J (2004) The role of group C and group G streptococci in acute pharyngitis in children. Clin Microbiol Infect 10:37–40

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetoslav Dimitrov Todorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bogsan, C.S., Nero, L.A., Todorov, S.D. (2015). From Traditional Knowledge to an Innovative Approach for Bio-preservation in Food by Using Lactic Acid Bacteria. In: Liong, MT. (eds) Beneficial Microorganisms in Food and Nutraceuticals. Microbiology Monographs, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-23177-8_1

Download citation

Publish with us

Policies and ethics