Skip to main content

Effect of Industrial Pollution on Crop Productivity

  • Chapter
Crop Production and Global Environmental Issues

Abstract

Industrial effluents are a major health concern for all living matter on Earth. The components of these effluents are adversely affecting the environment, causing an imbalance in nature and as a result, in the natural processes going on in the ecosystems. When disturbed, the balance among these ecosystems causes the living organisms in it to adapt to these changes by acting out alternately at various metabolic and biochemical levels. Plants being the foundation of the food chain, and not being able to move, are the major concern at this point in as much as they uptake the harmful substances from the environment and accumulate them in their system, affecting their own health as well the health of all the consumers directly or indirectly depending on them for their food. Several crop plants cultivated as a major food source for humans worldwide need to be paid attention for adverse effects on developmental processes and yield as the agricultural soils are irrigated by water polluted with industrial wastes. As the title indicates, in this chapter we are concerned with the types of substances industrial wastes can contain, their uptake by the plant influencing the uptake, transfer, and movement of other nutrients, and the effect they cause on the growth and biomass of crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin MDJ, Meharg AA (2002) Relative toxicity of arsenite and arsenate on germination and early seedling growth of rice (Oryzasativa L.). Plant Soil 243:57–66

    Article  CAS  Google Scholar 

  • Abifarin AO (1988) Grain yield loss due to iron toxicity. WARDA (West Africa Rice Development Association) Tech. News Lett 8(1):1–2

    Google Scholar 

  • Adriano DC (1987) Other trace elements, in: Trace Elements in Terrestrial Environment. Springer, New York, pp 470–496

    Google Scholar 

  • Agarwala SC, Bisht SS, Sharma CP (1977) Relative effectiveness of certain heavy metals in producing toxicity and symptoms of iron deficiency in barley. Can J Bot 55:1299–1307

    Article  CAS  Google Scholar 

  • Alam S, Kamei S, Kawai S (2000) Phytosiderophore release from manganese-induced iron deficiency in barley. J Plant Nutr 23:1193–1207

    Article  CAS  Google Scholar 

  • Alcantara E, Romera FJ, Canete M, De La Guardia MD (1994) Effects of heavy metals on both induction and function of root Fe(III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. J Exp Bot 45:1893–1898

    Article  CAS  Google Scholar 

  • Allaway WH (1968) Agronomic control over the environmental cycling of trace elements. Adv Agron 20:235–274

    Article  CAS  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82:1227–1338

    CAS  Google Scholar 

  • Arora M, Kiran B, Rani S, Rani A, Kaur B, Mittal N (2008) Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chem 111:811–815

    Article  CAS  Google Scholar 

  • ATSDR (2007) Toxicological profile for arsenic. US Department ofHealth and Human Services. Agency for Toxic Substances and Disease Registry, Atlanta

    Google Scholar 

  • Avudainayagam S, Megharaj M, Owens G, Kookana RS, Chittleborough D, Naidu R (2003) Chemistry of chromium in soils with emphasis on tannery waste sites. Rev Environ Contam Toxicol 178:53–91

    CAS  PubMed  Google Scholar 

  • Bachman GR, Miller WB (1995) Iron chelate inducible iron/ manganese toxicity in zonal geranium. J Plant Nutr 18:1917–1929

    Article  CAS  Google Scholar 

  • Baker WG (1972) Toxicity levels of mercury lead, copper and zinc in tissue culture systems of cauliflowers lettucepotato and carrot. Can J Bot 50:973–976

    Article  Google Scholar 

  • Balestrasse KB, Benavides MP, Gallego SM, Tomaro ML (2003) Effect on cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Funct Plant Biol 30:57–64

    Article  CAS  Google Scholar 

  • Barcelo J, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13:1–37

    Article  CAS  Google Scholar 

  • Barceloux DG (1999) Cobalt. J Toxicol Clin Toxicol 37:201–206

    Article  CAS  PubMed  Google Scholar 

  • Bishnoi NR, Chugh LK, Sawhney SK (1993a) Effect of chromium on photosynthesis, respiration and nitrogen fixation in pea (Pisum sativum L) seedlings. J Plant Physiol 142:25–30

    Article  CAS  Google Scholar 

  • Bishnoi NR, Dua A, Gupta VK, Sawhney SK (1993b) Effect of chromium on seed germination, seedling growth and yield of peas. Agric Econ Environ 47:47–57

    Article  CAS  Google Scholar 

  • Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351

    Article  CAS  PubMed  Google Scholar 

  • Bohner H, Bohme H, Boger P (1980) Reciprocal formation of plastocyanin and cytochrome c-553 and the influence of cupric ions on photosynthetic electron transport. Biochim Biophys Acta 592:103–112

    Article  CAS  PubMed  Google Scholar 

  • Britto DT, Siddiqi MY, Glass AD, Kronzucker HJ (2001) Futile transmembrane NH4+ cycling: a cellular hypothesis to explain ammonium toxicity in plants. Proc Natl Acad Sci USA 98(7):4255–4258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burló F, Guijarro I, Carbonell-Barrachina AA, Valero D, Martínez-Sánchez F (1999) Arsenic species: effects on and accumulation bytomato plants. J Agric Food Chem 47:1247–1253

    Article  PubMed  Google Scholar 

  • Burnell JN (1988) In: Webb MJ, Nable RO, Graham RD, Hannam RJ (eds) Manganese in Soil and Plants. Kluwer Academic Publishers, Dodrecht/Boston/London, pp 125–137

    Chapter  Google Scholar 

  • Cakmak I, Marshner H (1993) Effect of zinc nutritional status on superoxide radical and hydrogen peroxide scavenging enzymes in bean leaves. In: Barrow NJ (ed) Plant nutrition-from genetic engineering field practice. Kluwer, The Netherlanads, pp 133–137

    Chapter  Google Scholar 

  • CARBONELL-BARRACHINA AA, ARABI MA, DELAUNE RD, GAMBRELL RP, PATRICK WHJ (1998) The influence of arsenic chemicalform and concentration on Spartina patens and Spartinaalterniflora growth and tissue arsenic concentration. Plant Soil 198:33–43

    Article  CAS  Google Scholar 

  • Cargnelutti D, Tabaldi LA, Spanevello RM, Jucoski GO, Battisti V, Redin M, Linares CEB, Dressler VL, Flores MM, Nicoloso FT, Morsch VM, Schetinger MRC (2006) Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 65:999–1106

    Article  CAS  PubMed  Google Scholar 

  • Cataldo DA, Garland TR, Wildung RE (1978) Nickel in plants: I. Uptake kinetics using intact soybean seedlings. Plant Physiol 62:563–565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cavallini A, Natali L, Durante M, Maserti M (1999) Mercury uptake, distribution and DNA affinity in durum wheat (Triticum durum Desf.) plants. Sci Total Environ 243(244):119–127

    Article  Google Scholar 

  • Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74

    Article  CAS  PubMed  Google Scholar 

  • Cho UH, Park JO (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9

    Article  CAS  PubMed  Google Scholar 

  • Choi JM, Pak CH, Lee CW (1996) Micronutrient toxicity in French marigold. J Plant Nutr 19:901–916

    Article  CAS  Google Scholar 

  • Clarimont KB, Hagar WG, Davis EA (1986) Manganese toxicity to chlorophyll synthesis in tobacco callus. Plant Physiol 80:291–293

    Article  Google Scholar 

  • Clarke E, Baldwin AH (2002) Responses of wetland plants to ammonia and water level. Ecol Eng 18:257–264

    Article  Google Scholar 

  • Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7:31–40

    Article  CAS  PubMed  Google Scholar 

  • Costa G, Morel JL (1994) Water relations, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiol Biochem 32:561–570

    CAS  Google Scholar 

  • Cox WJ, Reisenauer HM (1973) Growth and ion uptake by wheat supplied nitrogen as nitrate, or ammonium, or both. Plant Soil 38(2):363–380

    Article  CAS  Google Scholar 

  • Crawford TW, Stroehlein JL, Kuehl RO (1989) Manganese and rates of growth and mineral accumulation in cucumber. J Am Soc Hortic Sci 114:300–306

    CAS  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36

    Article  CAS  PubMed  Google Scholar 

  • Davies FT, Puryear JD, Newton RJ, Egilla JN, Grossi JAS (2002) Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth, and gas exchange. J Plant Nutr 25:2389–2407

    Article  CAS  Google Scholar 

  • de Dorlodot S, Lutts S, Bertin P (2005) Effects of ferrous iron toxicity on the growth and mineral composition of an inter specific rice. J Plant Nutr 28:1–20

    Article  CAS  Google Scholar 

  • De Filippis LF, Ziegler H (1993) Effect of sublethal concentrations of zinc, cadmium and mercury on the photosynthetic carbon reduction cycle of Euglena. J Plant Physiol 142:167–172

    Article  Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Holzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot 52:253–266

    Article  CAS  Google Scholar 

  • Devries W, Lofts S, Tipping E, Meili M, Groenenberg JE, Schutze G (2002) Impact of soil properties on critical concentrations of cadmium, lead, copper, zinc and mercury in soil and soil solution in view of ecotoxicological effects. Rev Environ Contam Toxicol 191:47–89

    Google Scholar 

  • Dewdy RH, Ham GE (1997) Soybean growth and elemental content as influenced by soil amendments of sewage sludge and heavy metals: seedling studies. Agronomy 69:300–303

    Article  Google Scholar 

  • Dijk E, Eck N (1995) Ammonium toxicity and nitrate response of axenically grown Dactylorhiza incarnate seedlings. New Phytol 131:361–367

    Article  CAS  Google Scholar 

  • Dube BK, Tewari K, Chatterjee J, Chatterjee C (2003) Excess chromium alters uptake and translocation of certain nutrients in citrullus. Chemosphere 53:1147–1153

    Article  CAS  PubMed  Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781

    Article  CAS  Google Scholar 

  • Ekmekci Y, Tanyolac D, Ayhan B (2008) Effect of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J Plant Physiol 165:600–611

    Article  CAS  PubMed  Google Scholar 

  • Elamin OM, Wilcox GE (1986a) Effect of magnesium and manganese nutrition on muskmelon growth and manganese toxicity. J Am Soc Hortic Sci 111:582–587

    CAS  Google Scholar 

  • Elamin OM, Wilcox GE (1986b) Effect of magnesium and manganese nutrition on watermelon growth and manganese toxicity. J Am Soc Hortic Sci 111:588–593

    CAS  Google Scholar 

  • European Union (2002) Heavy metals in wastes, European commission on environment http://www.ec.europa.eu/environment/waste/studies/pdf/heavymetalsreport.pdf

  • Fecht-Christoffers MM, Braun HP, Lemaitre-Guillier C, VanDorsselaer A, Horst WJ (2003) Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea. Plant Physiol 133:1935–1946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fodor A, Szabo-Nagy A, Erdei L (1995) The effects of cadmium on the fluidity and H?-ATPase activity of plasma membrane from sunflower and wheat roots. J Plant Physiol 14:787–792

    Google Scholar 

  • Fontes RLS, Cox FR (1998) Zinc toxicity in soybean grown at high iron concentration in nutrient solution. J Plant Nutr 21:1723–1730

    Article  CAS  Google Scholar 

  • Foy CD, Weil RR, Coradetti CA (1995) Differential manganese tolerances of cotton genotypes in nutrient solution. J Plant Nutr 18:685–706

    Article  CAS  Google Scholar 

  • Freedman B, Hutchinson TC (1981) Sources of metal and elemental contamination of terrestrial environments. In: Lepp NW (ed) Effect of Heavy Metal Pollution on Plants, vol 2, Metals in the Environment. Applied Science Publishers, London, pp 35–94

    Chapter  Google Scholar 

  • Gajewska E, Sklodowska M, Slaba M, Mazur J (2006) Effect of nickel on antioxidative enzymes activities, proline and chlorophyll contents in wheat shoots. Biol Plant 50:653–659

    Article  CAS  Google Scholar 

  • Geng CN, Zhu YG, Hu Y, Williams P, Meharg AA (2006) Arsenate causes differential acute toxicity to two P-deprived genotypes of rice seedlings (Oryza sativa L.). Plant Soil 279:297–306

    Article  CAS  Google Scholar 

  • Gimeno-Garcia E, Andreu V, Boluda R (1996) Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ Pollut 92:19–25

    Article  CAS  PubMed  Google Scholar 

  • Goldbold DJ, Hutterman A (1986) The uptake and toxicity of mercury and lead to spruce (Picea abies) seedlings. Water Air Soil Pollut 31:509–515

    Article  Google Scholar 

  • Gonnelli C, Galardi F, Gabbrielli R (2001) Nickel and copper tolerance in three Tuscan populations of Silene paradoxa.Physiol. Planta 113:507–514

    Article  CAS  Google Scholar 

  • González A, Lynch JP (1997) Effects of manganese toxicity on leaf CO2 assimilation of contrating common bean genotypes. Physiol Plant 101:872–880

    Article  Google Scholar 

  • González A, Lynch JP (1999) Subcellular and tissue Mn compartmentation in bean leaves under Mn toxicity stress. Aust J Plant Physiol 26:811–822

    Article  Google Scholar 

  • Gonzalez A, Steffen KL, Lynch JP (1998) Light and excess manganese. Implications for oxidative stress in common bean. Plant Physiol 118:493–504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gopal R, Rizvi AH, Nautiyal N (2009) Chromium alters iron nutrition and water relations of spinach. J Plant Nutr 32:1551–1559

    Article  CAS  Google Scholar 

  • Göthberg A, Greger M, Holm K, Bergtsson BE (2004) Influence of nutrient levels on uptake and effects of mercury, cadmium and lead in water spinach. J Environ Qual 33:1247–1255

    Article  PubMed  Google Scholar 

  • Gruenhage L, Jager IIJ (1985) Effect of heavy metals on growth and heavy metals content of Allium Porrum and Pisum sativum. Angew Bot 59:11–28

    CAS  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Over expressing GSHI and AsPCSI simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Chandra P (1998) Bioaccumulation and toxicity of mercury in rooted-submerged macrophyte Vallisneria spiralis. Environ Pollut 103:327–332

    Article  CAS  Google Scholar 

  • Gupta SP, Gupta VK, Kala R (1996) A note on effect of nickel application on rabi cereals. New Bot 23:237–239

    Google Scholar 

  • Gwozdz EA, Przymusinski R, Rucinska R, Deckert J (1997) Plant cell responses to heavy metals: molecular and physiological aspects. Acta Physiol Plant 19:459–465

    Article  CAS  Google Scholar 

  • Hageman RH (1984) Ammonium versus nitrate nutrition of higher plants. Nitrogen in Crop Production. ASACSSA- SSSA, Madison, WI, In, pp 67–82

    Google Scholar 

  • Han FX, Su Y, Monts DL, Waggoner AC, Plodinec JM (2006) Binding distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennesse, USA. Sci Total Environ 368:753–768

    Article  CAS  PubMed  Google Scholar 

  • Hasan SA, Hayat S, Ali B, Ahmad A (2008) 28-homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environ Pollut 151:60–66

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Hakeem KR, Öztürk M, Fujita M (2014) Arsenic toxicity in plants and possible remediation. In: Khalid Rehman H, Muhammad S, Munir O, Ahmet M (eds) Soil Remediation and plants. Academic/Elsevier, New York

    Google Scholar 

  • Haynes RJ, Goh KM (1978) Ammonium and nitrate nutrition of plants. Biol Rev 53(4):465–510

    Article  CAS  Google Scholar 

  • Hegedus A, Erdei S, Horvath G (2001) Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedings under cadmium stress. Plant Sci 160:1085–1093

    Article  CAS  PubMed  Google Scholar 

  • Hendy GAF, Baker AJM, Evart CF (1992) Cadmium tolerance and toxicity, oxygen radical processes and molecular damage in cadmium tolerant and cadmium-sensitive clones of Holcus lanatus. Acta Bot Neerl 41:271–281

    Article  Google Scholar 

  • Hernandez LE, Carpena-Ruiz R, Garate A (1996) Alterations in the mineral nutrition of pea seedlings exposed to cadmium. J Plant Nutr 19:1581–1598

    Article  CAS  Google Scholar 

  • Hingston FJ, Posner AM, Quirk JP (1971) Competitive adsorption of negatively charged ligands on oxide surfaces. Discuss Faraday Soc 52:334–342

    Article  Google Scholar 

  • Horst WJ (1982) Quick screening of cowpea genotypes for manganese tolerance during vegetative and reproductive growth. Z Pflanzenernähr Bodenk 145:423–435

    Article  CAS  Google Scholar 

  • Horst J (1988a) Beschreibung der Gleichgewichtslage des ionenaustauschs an schwach saoren harzen mit hilfe eines models der oberflachenkomplexbildung, doctoral thesis, University of Karlsruhe, Kfk report 4464

    Google Scholar 

  • Horst WJ (1988b) In: Webb MJ, Nable RO, Graham RD, Hannam RJ (eds) Manganese in Soil and Plants. Kluwer Academic Publishers, Dodrecht/Boston/London, pp 175–188

    Chapter  Google Scholar 

  • Horst WJ, Marschner H (1987) Symptome von Manganüberschuss bei Bohnen (Phaseolus vulgaris L.). Z Pflanzenernähr Bodenk 141:129–142

    Article  Google Scholar 

  • Houtz RL, Nable RO, Cheniae GM (1988) Evidence for effects on the in vivo activity of ribulose-bisphosphate carboxylase/oxygenase during development of Mn toxicity in tobacco. Plant Physiol 86:1143–1149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang CV, Bazzaz FA, Venderhoef LN (1974) The inhibition of soya bean metabolism by cadmium and lead. Plant Physiol 34:122–124

    Article  Google Scholar 

  • Huang JW, Grunes DL, Kochian LV (1992) Aluminum effects on the kinetics of calcium uptake into cells of the wheat root apex : Quantification of calcium fluxes using a calcium-selective vibrating microelectrode. Planta 188:414–421

    Article  CAS  PubMed  Google Scholar 

  • Israr M, Sahi S, Datta R, Sarkar D (2006) Bioaccumulation and physiological effects of mercury in Sesbania drummonii. Chemosphere 65:591–598

    Article  CAS  PubMed  Google Scholar 

  • Jain R, Srivastava S, Madan VK, Jain R (2000) Influence of chromium on growth and cell division of sugarcane. Ind J Plant Physiol 5:228–231

    CAS  Google Scholar 

  • Jugsujinda A, Patrick WH Jr (1993) Evaluation of toxic conditions associated with oranging symptoms of rice in a flooded Oxisol in Sumatra Indonesia. Plant Soil 152:237–243

    Article  CAS  Google Scholar 

  • Juwarkar AS, Shende GB (1986) Interaction of Cd-Pb effect on growth yield and content of Cd, Pb in barley. Ind J Environ Health 28:235–243

    CAS  Google Scholar 

  • Kaji T, Suzuki M, Yamamoto C, Mishima A, Sakamoto M, Kozuka H (1995) Severe damage of cultured vascular endothelial cell monolayer after simultaneous exposure to cadmium and lead. Arch Environ Contam Toxicol 28:168–172

    Article  CAS  PubMed  Google Scholar 

  • Kamal M, Ghalya AE, Mahmouda N, Cote R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29:1029–1039

    Article  CAS  PubMed  Google Scholar 

  • Kennedy IR (1986) Acid Soil and Acid Rain: The Impact on the Environment of Nitrogen and SuIphur Cycling. Research Studies Press, Letchworth, UK

    Google Scholar 

  • Kitao M, Lei TT, Koike T (1997a) Effects of manganese toxicity on photosynthesis of white birch (Betula platyphylla var.japonica) seedlings. Physiol Plant 101:249–256

    Article  CAS  Google Scholar 

  • Kitao M, Lei TT, Koike T (1997b) Effects of manganese in solution culture on the growth of five deciduous broad-leaved tree species with different successional characters from northern Japan. Photosynthesis 36:31–40

    Article  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931

    Article  CAS  PubMed  Google Scholar 

  • Kronzucker HJ, Kirk GJ, Siddiqi MY, Glass AD (1998) Effects of hypoxia on 13NH4+ fluxes in rice roots kinetics and compartmental analysis. Plant Physiol 116(2):581–587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kubota J (1965) Distribution of total and extractable forms of cobalt in morphologically different soils of eastern United States. Soil Sci 99:166–174

    Article  CAS  Google Scholar 

  • Kumar G, Singh RP, Sushila (1992) Nitrate assimilation and biomass production in Seasamum indicum (L.) seedlings in lead enriched environment. Water Soil Pollut 215:124–215

    Google Scholar 

  • Le Bot J, Kirkby EA, Beusichem ML (1990) Manganese toxicity in tomato plants: effects on cation uptake and distribution. J Plant Nutr 13:513–525

    Article  Google Scholar 

  • Lee CW, Choi JM, Pak CH (1996) Micronutrient toxicity in seed geranium (Pelargonium 9 hortorum Baley). J Am Soc Hortic Sci 121:77–82

    CAS  Google Scholar 

  • Lewis S, Donkin ME, Depledge MH (2001) Hsp 70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aqua Toxicol 51:277–291

    Article  CAS  Google Scholar 

  • Li HF, Gray C, Mico C, Zhao FJ, McGrath SP (2009) Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere 75:979–986

    Article  CAS  PubMed  Google Scholar 

  • Liao XY, Chen TB, Lei M, Huang ZC, Xiao XY, An ZZ (2004) Root distributions and elemental accumulations of Chinese brake (Pterisvittata L.) from As-contaminated soils. Plant Soil 261:109–116

    Article  CAS  Google Scholar 

  • Lidon FC (2002) Micronutrients uptake and translocation in Mn-treated rice. J Plant Nutr 25:757–768

    Article  CAS  Google Scholar 

  • Lidon FC, Barreiro MG, Ramalho JC (2004) Manganese accumulation in rice: implications for photosynthetic functioning. J Plant Physiol 161:1235–1244

    Article  CAS  PubMed  Google Scholar 

  • LIU X, ZHANG S, SHAN X, ZHU YG (2005) Toxicity of arsenate and arsenite on germination, seedling growth andamylolytic activity of wheat. Chemosphere 61:293–301

    Article  CAS  PubMed  Google Scholar 

  • López-Climent MF, Arbona V, Pérez-Clemente RM, Gómez-Cadenas A (2011) Effects of cadmium on gas exchange and phytohormone contents in citrus. Biol Plant 55:187–190

    Article  CAS  Google Scholar 

  • Lopez-Luna J, Gonzalez-Chavez M, Esparza-Garcia F, Rodriguez-Vazquez R (2009) Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalent chromium, using wheat, oat and sorghum plants. J Hazard Mater 163:829–834

    Article  CAS  PubMed  Google Scholar 

  • Magalhäes JR, Huber DM (1989) Ammonium assimilation in different plant species as affected by nitrogen form and pH control in solution culture. Fertil Res 21(1):1–6

    Article  Google Scholar 

  • Magalhães JR, Machado AT, Huber DM (1995) Similarities in response of maize genotypes to water logging and ammonium toxicity. J Plant Nutr 18:2339–2346

    Article  Google Scholar 

  • Mallick S, Sinam G, Kumar Mishra R, Sinha S (2010) Interactive effects of Cr and Fe treatments on plants growth, nutrition and oxidative status in Zea mays L. Ecotoxicol Environ Saf 73:987–995

    Article  CAS  PubMed  Google Scholar 

  • Marin AR, Masscheleyn PH, Patrik J (1992) The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant Soil 139:175–183

    Article  CAS  Google Scholar 

  • Marschner H (1995) Beneficial mineral elements, in: Mineral Nutrition of Higher Plants. Academic, Harcourt Brace and Company, London, pp 405–435

    Book  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Meharg AA, Macnair MR (1992) Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcuslanatus. J Exp Bot 43:519–524

    Article  CAS  Google Scholar 

  • Mengel K, Kirkby EA (1987) Copper, further elements of importance. In: Principles of plant nutrition, 4th edn. International Potash Institute, Berne, pp 537–545, 573–588

    Google Scholar 

  • Messer RL, Lockwood PE, Tseng WY, Edwards K, Shaw M, Caughman GB, Lewis JB, Wataha JC (2005) Mercury (II) alters mitochondrial activity of monocytes at sublethal doses via oxidative stress mechanisms. J Biomed Mater Res B 75:257–263

    Article  CAS  Google Scholar 

  • Miller JE, Hassete JJ, Koppe DE (1975) Interaction of lead and cadmium of electron energy transfer reaction in corn mitochondria. Physiol Plant 28:166–171

    Article  Google Scholar 

  • Milone MT, Sgherri C, Clijsters H, Navari-Izzo F (2003) Antioxidative responses of wheat treated with realistic concentration of cadmium. Environ Exp Bot 50:265–276

    Article  CAS  Google Scholar 

  • Mohamed AA, Castagna A, Ranieri A, Sanita di Toppi L (2012) Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiol Biochem 57:15–22

    Article  CAS  PubMed  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camella sinensis (L.). O Kuntze. Environ Toxicol 22:368–374

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Caselles J, Moral R, Pera-Espinosa A, Marcia MD (2000) Cadmium accumulation and distribution in cucumber plants. J Plant Nutr 23:243–250

    Article  CAS  Google Scholar 

  • Moroni JS, Briggs KG, Taylor GJ (1991) Chlorophyll content and leaf elongation rate in wheat seedlings as a measure of manganese tolerance. Plant Soil 136:1–9

    Article  CAS  Google Scholar 

  • Morzck E Jr, Funicclli NA (1982) Effect of lead and on germination of Spartina alterniflora Losiel seeds at various salinities. Environ Exp Bot 22:23–32

    Article  Google Scholar 

  • Mukherji S, Maitra P (1976) Toxic effects of lead growth and metabolism of germinating rice (Oryza sativa L.) seeds mitosis of onion (Allium cepa) root tip cells. Ind J Exp Biol 14:519–521

    CAS  Google Scholar 

  • Munzuroglu O, Geckil H (2002) Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch Environ Contam Toxicol 43:203–213

    Article  CAS  PubMed  Google Scholar 

  • Nable RO, Houtz RL, Cheniae GM (1988) Early inhibition of photosynthesis during development of Mn toxicity in tobacco. Plant Physiol 86:1136–1142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Narwal RP, Singh M, Gupta AP, Khusad MS (1994) Nickel and Zn interaction in corn grown on sewer irrigated soil. Crop Res 7:366–372

    Google Scholar 

  • Neelima P, Reddy KJ (2002) Interaction of copper and cadmium with seedlings growth and biochemical responses in Solanum melongena. Environ Pollut Technol 1:285–290

    CAS  Google Scholar 

  • Nieboer E, Richardson DHS (1980) The replacement of the nondescript term heavy metals by a biologically and chemistry significant classification of metal ions. Environ Pollut Ser B 1:3–26

    Article  CAS  Google Scholar 

  • Nuttall J, Armstrong R, Connor D (2003) The effects of salinity, sodicity and soluble boron on wheat yields in the Victorian southern Mallee. In: Proceedings of the 11th Australian agronomy conference on solutions for a better environment, pp 2–6

    Google Scholar 

  • Olaleye AO, Tabi AO, Ogunkunle AO, Singh BN, Sahrawat KL (2001) Effect of toxic iron concentrations on the growth of lowland rice. J Plant Nutr 24:441–457

    Article  CAS  Google Scholar 

  • Paiva LB, de Oliveira JG, Azevedo RA, Ribeiro DR, da Silva MG, Vitória AP (2009) Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+. Environ Exp Bot 65:403–409

    Article  CAS  Google Scholar 

  • Paivoke H (1983) The short term effect of zinc on growth anatomy and acid phosphate activity of pea seedlings. Ann Bot 20:307–309

    CAS  Google Scholar 

  • Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+, and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758

    Article  CAS  Google Scholar 

  • Pandey S, Gupta K, Mukherjee AK (2007) Impact of cadmium and lead on Catharanthus roseus--a phytoremediation study. J Environ Biol 28:655–662

    CAS  PubMed  Google Scholar 

  • Pandey V, Dixit V, Shyam R (2009) Chromium effect on ROS generation and detoxification in pea (Pisum sativum) leaf chloroplasts. Protoplasma 236:85–95

    Article  CAS  PubMed  Google Scholar 

  • Pandolfini T, Gabbrielli R, Comparini C (1992) Nickel toxicity and peroxidise activity in seedlings of Triticum aestivum L. Plant Cell Environ 15:719–725

    Article  CAS  Google Scholar 

  • Parida BK, Chhibba IM, Nayyar VK (2003) Influence of nickel-contaminated soils on fenugreek (Trigonella corniculata L.) growth and mineral composition. Sci Hortic 98(2):113–119

    Article  CAS  Google Scholar 

  • Parr PD, Taylor FG Jr (1982) Germination and growth effects of hexavalent chromium in Orocol TL (a corrosion inhibitor) on Phaseolus vulgaris. Environ Int 7:197–202

    Article  CAS  Google Scholar 

  • Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66:379–422

    Article  Google Scholar 

  • Peralta JR, Gardea Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, Rascon E (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa) L. B. Environ Contam Toxicol 66:727–734

    CAS  Google Scholar 

  • Pigna M, Cozzolino V, GiandonatoCaporale A, Mora ML, Dimeo V, Jara AA, Violante A (2010) Effects of phosphorus fertilization on arsenic uptake by wheat grown in polluted soils. J Soil Sci Plant Nutr 10:428–442

    Article  Google Scholar 

  • Ponnamperuma FN, Bradfield R, Peech M (1955) Physiological disease of rice attributable to iron toxicity. Nature 175:265

    Article  CAS  Google Scholar 

  • Porter JR, Cheridan RP (1981) Inhibition of nitrogen fixation in alffa alfa by arsenate, heavy metals, fluoride and simulated acid rain. Plant Physiol 68:143–148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prasad DDK, Prasad ARK (1987) Altered d-aminolevulinic acid metabolism by lead and mercury in germinating seedlings of bajra (Pennisetum typhoideum). J Plant Physiol 127:241–249

    Article  CAS  Google Scholar 

  • Prasad KVSK, Pardha saradhi P, Sharmila P (1999) Concerted action of antioxidant enzyme and curtailed growth under zinc toxicity in Brassica juncea. Environ Exp Bot 42:1–10

    Article  CAS  Google Scholar 

  • Prasad MNV, Greger M, Landberg T (2001) Acacia nilotica L. bark removes toxic elements from solution: corroboration from toxicity bioassay using Salix viminalis L. in hydroponic system. Int J Phytoremed 3:289–300

    Article  CAS  Google Scholar 

  • Rahman H, Sabreen S, Alam S, Kawai S (2005) Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. J Plant Nutr 28:393–404

    Article  CAS  Google Scholar 

  • Raven JA, Smith FA (1976) Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol 76(3):205–212

    Article  CAS  Google Scholar 

  • Reddy AM, Kumar SG, Jyotsnakumari G, Thimmanayak S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60:97–104

    Article  CAS  PubMed  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Rengel Z (1992) Role of calcium in aluminium toxicity. New Phytol 121:499–513

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Rodriquez-Serrano M, Corpas FJ, Gomez M, Del Rio LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2–and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    Article  CAS  Google Scholar 

  • Ros R, Cook DT, CarmenMartinez-CortinaIsabel P (1992) Nickel and cadmium-related changes in growth, plasma membrane lipid composition, atpase hydrolytic activity and protonpumping of rice (Oryza sativa L. cv. Bahia) Shoots. J Exp Bot 43:1475–1481

    Article  CAS  Google Scholar 

  • Rout GR, Samantaray S, Das P (1997) Differential chromium tolerance among eight mungbean cultivars grown in nutrient culture. J Plant Nutr 20:473–483

    Article  CAS  Google Scholar 

  • Rout GR, Samantaray S, Das P (2000) Effects of chromium and nickel on germination and growth in tolerant and non-tolerant populations of Echinochloa colona (L.) Link. Chemosphere 40:855–859

    Article  CAS  PubMed  Google Scholar 

  • Ryan PR, DiTomaso JM, Kochian LV (1993) Aluminium toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. J Exp Bot 44:437–446

    Article  CAS  Google Scholar 

  • Sabir M, Hakeem KR, Aziz T, Zia-ur-Rehman M, Rashid I, Ozturk M (2014) High Ni levels in soil can modify growth performance and mineral status of wheat cultivars. Clean Soil Air Water 42:1263–1271

    Article  CAS  Google Scholar 

  • Sahrawat KL, Sika M (2002) Comparative tolerance of Oryza sativa and O. glaberrima rice cultivars for iron toxicity in West Africa. Int Rice Res Notes 27(2):30–31

    Google Scholar 

  • Sahrawat KL, Diatta S, Singh BN (2000) Reducing iron toxicity in lowland rice through an integrated use of tolerant genotypes and plant nutrient management. Oryza 37:44–47

    Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley D, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  CAS  PubMed  Google Scholar 

  • Samanta G, RoyChowdhury T, Mandal BK, Biswas BK, Chowdhury UK, Basu GK, Chanda CR, Lodh D, Chakraborti D (1999) Flow injection hydride generation atomic absorption spectrometry for determination of arsenic in water and biological samples from arsenic-affected districts of West Bengal, India and Bangladesh. Microchem J 62:174–191

    Article  CAS  Google Scholar 

  • Samantary S (2002) Biochemical responses of Cr-tolerant and Cr-sensitive mung bean cultivars grown on varying levels of chromium. Chemosphere 47:1065–1072

    Article  CAS  PubMed  Google Scholar 

  • Sandmann G, Boger P (1980) Copper deficiency and toxicity in Scenedesmus. Z Pflanzenphysiol 98:53–59

    Article  CAS  Google Scholar 

  • Sanita di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Sarwani MA, Jumberi A, Noor A (1995) Management of rainfed wetland with iron toxicity problem for rice production in Indonesia. In: Fragile lives in fragile ecosystems. International Rice Research Institute: Manila, Philippines, pp 299–312

    Google Scholar 

  • Shanker AK, Sudhagar R, Pathmanabhan G (2003a) Growth Phytochelatin SH and antioxidative response of Sunflower as affected by chromium speciation. In: 2nd international congress of plant physiology on sustainable plant productivity under changing environment, New Delhi

    Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  • Sharma VK, Kansal BD (1986) Heavy metal contamination of soils and plants with sewage irrigation. Pollut Res 4:86–91

    Google Scholar 

  • Siddiqi MY, Malhotra B, Min X, Glass ADM (2002) Effects of ammonium and inorganic carbon enrichment on growth and yield of a hydroponic tomato crop. J Plant Nutr Soil Sci 165:191–197

    Article  CAS  Google Scholar 

  • Singh PK, Tewari SK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24:107–117

    CAS  PubMed  Google Scholar 

  • Sinha SK, Srinivastava HS, Mishra SN (1988a) Nitrate assimilation in intact and excised maize leaves in the presence of lead. Bull Environ Cont Toxi 41:419–422

    Article  CAS  Google Scholar 

  • Sinha SK, Srinivastava HS, Mishra SN (1988b) Effect of lead on nitrate reductase activity and nitrate assimilation in pea leaves. Bot Pollut 57:457–463

    CAS  Google Scholar 

  • Sinha S, Guptha M, Chandra P (1997) Oxidative stress induced by iron in Hydrilla verticillata (i.f) Royle: response of antioxidants. Ecotoxicol Environ Safe 38:286–291

    Article  CAS  Google Scholar 

  • Somasekharaiah BV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxidase in chlorophyll degradation. Physiol Plant 85:85–89

    Article  Google Scholar 

  • Stadtman ER, Oliver CN (1991) Metal-catalyzed oxidation of proteins. Physiological consequences. J Biol Chem 266:2005–2008

    CAS  PubMed  Google Scholar 

  • Stiborova M, Pitrichova M, Brezinova A (1987) Effect of heavy metal ions in growth and biochemical characteristic of photosynthesis of barley and maize seedlings. Biol Plant 29:453–467

    Article  CAS  Google Scholar 

  • Stoeva N, Berova M, Zlatev Z (2003) Physiological response of maize to arsenic contamination. Biol Plant 47:449–452

    Article  CAS  Google Scholar 

  • Stoeva N, Berova M, Vassilev A, Zlatev Z (2005) Effect of arsenic on some physiological parameters in bean plants. Biol Plant 49(2):293–296

    Article  CAS  Google Scholar 

  • Sudhakar C, Symalabai L, Veeranjaveyuler K (1992) Lead tolerance of certain legume species grown on lead or tailing. Agric Econ Environ 41:253–261

    Article  CAS  Google Scholar 

  • Sundaramoorthy P, Chidambaram A, Ganesh KS, Unnikannan P, Baskaran L (2010) Chromium stress in paddy: (i) nutrient status of paddy under chromium stress; (ii) phytoremediation of chromium by aquatic and terrestrial weeds. C R Biol 333:597–607

    Article  CAS  PubMed  Google Scholar 

  • Surrency D (1993) Evaluation of aquatic plants for constructed wetlands. In: Moshiri GA (ed) Constructed Wetlands for Water Quality Improvement. Lewis Publishers, Boca Raton, FL, pp 349–357

    Google Scholar 

  • Swietlik D (1999) Zinc nutrition in horticultural crops. In: Janick J (ed) Horticultural Reviews, vol 23. Wiley, New York, pp 109–179

    Google Scholar 

  • Tang SR, Wilke BM, Brooks RR, Tang SR (2001) Heavy-metal uptake by metal tolerant Elsholtzia haichowensis and Commelina communis from China. Commun Soil Sci Plant Anal 32:895–905

    Article  CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Guptaand DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    Article  CAS  PubMed  Google Scholar 

  • Tu C, Ma LQ (2003) Effects of arsenate and phosphate on their accumulation by an arsenic-hyper accumulator Pteris vittata L. Plant Soil 249:373–382

    Article  CAS  Google Scholar 

  • Ullrich-Eberius CI, Sanz A, Novacky AJ (1989) Evaluation of arsenate- and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba-G1. J Exp Bot 40:119–128

    Article  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Van Assche F, Cardinaels C, Clijsters H (1988) Induction of enzyme capacity on plants as a result of heavy metal toxicity, dose response relations in Phaseolus vulgaris L. treated with cadmium. Environ Pollut 6:103–115

    Article  Google Scholar 

  • Vanselow AP (1965) Cobalt. In: Chapman HD (ed) Diagnostic Criteria of Plants. Quality Printing Company, Abilene, TX, pp 142–156

    Google Scholar 

  • Vergnano O, Hunter JG (1952) Nickel and cobalt toxicities in oat plants. Ann Bot 17:317–328

    Google Scholar 

  • Wadhawan K (1995) Nickel availability and its uptake by plant as influenced by nitrogen and zinc application. Punjab Agricultural University, Ludhiana, India, MSc Thesis

    Google Scholar 

  • Wahid A, Ghani A (2007) Varietal differences in mungbean (Vigna radiata) for growth, yield, toxicity symptoms and cadmium accumulation. Ann Appl Biol 152:59–69

    Article  CAS  Google Scholar 

  • Wang W (1991) Ammonia toxicity to macrophytes (common duckweed and rice) using static and renewal methods. Environ Toxicol Chem 10:1173–1177

    Article  CAS  Google Scholar 

  • Wang LH, Duan GL (2009) Effect of external and internal phosphate status on arsenic toxicity and accumulation in rice seedlings. J Environ Sci 21:346–351

    Article  CAS  Google Scholar 

  • Wang Y, Greger M (2004) Clonal differences in mercury tolerance, accumulation, and distribution in willow. J Environ Qual 33:1779–1785

    Article  CAS  PubMed  Google Scholar 

  • Wang MY, Siddiqi MY, Ruth TJ, Glass AD (1993) Ammonium uptake by rice roots (I. Fluxes and subcellular distribution of 13NH4+). Plant Physiol 103(4):1249–1258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Warne MS, Heemsbergen D, Stevens D, McLaughlin M, Cozens G, Whatmuff M, Broos K, Barry G, Bell M, Nash D, Pritchard D, Penney N (2008) Modeling the toxicity of copper and zinc salts to wheat in 14 soils. Environ Toxicol Chem 27:786–792

    Article  PubMed  Google Scholar 

  • WHO (1989) Toxicological Evaluation of Certain Food Additives and Contamination. World Health Organization, Geneva

    Google Scholar 

  • Wiersma JV (2005) High rates of Fe-EDDHA and seed iron concentration suggest partial solutions to iron deficiency in soybean. Agron J 97:924–934

    Article  CAS  Google Scholar 

  • Wintz H, Fox T, Vulpe C (2002) Responses of plants to iron, zinc and copper deficiencies. Biochem Soc Trans 30:766–768

    Article  CAS  PubMed  Google Scholar 

  • Wissemeier AH, Horst WJ (1992) Effect of light intensity on manganese toxicity symptoms and callose formation in cowpea (Vigna unguiculata (L.) Walp.). Plant Soil 143:299–309

    Article  CAS  Google Scholar 

  • Wojcik M, Tukiendorf A (2004) Phytochelatin synthesis and cadmium localization in wild type of Arabidopsis thaliana. Plant Growth Regul 44:71–80

    Article  CAS  Google Scholar 

  • Wu S (1994) Effect of manganese excess on the soybean plant cultivated under various growth conditions. J Plant Nutr 17:993–1003

    Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risk and best available strategies for remediation. doi:10.5402/2011/402647

  • Yang X, Baligar VC, Martens DC, Clark RB (1996a) Plant tolerance to Ni toxicity. I. Influx, transport and accumulation of Ni in four species. J Plant Nutr 19:73–85

    Article  CAS  Google Scholar 

  • Yang X, Baliger VC, Martens DC, Clark RB (1996b) Cadmium effects on influx and transport of mineral nutrients in plant species. J Plant Nutr 19:643–656

    Article  CAS  Google Scholar 

  • Yoshida S (1981) Fundamentals of rice crop science. International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156

    Article  CAS  Google Scholar 

  • Zeid IM (2001) Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biol Plant 44:111–115

    Article  CAS  Google Scholar 

  • Zhang WH, Tyerman SD (1999) Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol 120:849–857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang W, Cai Y, Tu C, Ma LQ (2002) Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Sci Total Environ 300:167–177

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9

    Article  CAS  PubMed  Google Scholar 

  • Zornoza P, Robles S, Martin N (1999) Alleviation of nickel toxicity by ammonium supply to sunflower plants. Plant Soil 208:221–226

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvina Gul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abbas, M.A., Iftikhar, H., Gul, A. (2015). Effect of Industrial Pollution on Crop Productivity. In: Hakeem, K. (eds) Crop Production and Global Environmental Issues. Springer, Cham. https://doi.org/10.1007/978-3-319-23162-4_5

Download citation

Publish with us

Policies and ethics