Skip to main content

Discovery and Development of an Anti-methamphetamine Monoclonal Antibody for Use in Treating Methamphetamine Abuse

  • Chapter
  • First Online:
Biologics to Treat Substance Use Disorders

Abstract

Anti-methamphetamine monoclonal antibodies (mAb) can reduce the pharmacological effects of methamphetamine (METH) in rodent models of METH abuse. Rather than a direct action in the brain, the mAb medication binds METH with high affinity in the bloodstream leading to a reduction and slowing of METH brain penetration. Through an extensive discovery and development process, prototype mouse anti-METH mAb medications were selected and tested in preclinical studies to select a final mAb with both high affinity for METH and long-term functionality in vivo. This antibody was then converted into a chimeric anti-METH mAb suitable for human use. In a Phase 1a clinical trial, the medication proved safe, with a half-life of 18 days. Because of this prolonged half-life, patients might only need mAb treatment once every 3 weeks to aid in the protection from relapse to METH abuse. Additional safety and efficacy will be tested in future clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMP:

(+)-amphetamine (unless denoted as other stereoisomer)

AUC:

area under the concentration-time curve

Bmax :

maximum number of binding sites

ch:

chimeric

Css, Cmin, Cmax :

denotes the steady-state, minimum, and maximum concentrations during chronic administration of a drug

ECG:

electrocardiograms

ELISA:

enzyme-linked immunosorbent assay

FcRn:

Fc receptor of the neonate

HACA:

human anti-chimeric antibodies

IgG:

immunoglobulin G

iv:

intravenous

Kd :

dissociation constant

mAb:

monoclonal antibody (both singular and plural)

KI :

inhibition constant

MCV:

METH-conjugate vaccine

MDMA:

(+/−)-methylenedioxymethamphetamine (unless denoted as other stereoisomer)

METH:

(+)-methamphetamine (unless denoted as other stereoisomer)

t1/2 :

half-life

sc:

subcutaneous

References

  • Abreu ME, Bigelow GE, Fleisher L, Walsh SL. Effect of intravenous injection speed on responses to cocaine and hydromorphone in humans. Psychopharmacology (Berl). 2001;154:76–84.

    Article  CAS  Google Scholar 

  • Brensilver M, Heinzerling KG, Shoptaw S. Pharmacotherapy of amphetamine-type stimulant dependence: an update. Drug Alcohol Rev. 2013;32:449–60. doi:10.1111/dar.12048.

    Article  PubMed  PubMed Central  Google Scholar 

  • Byrnes-Blake KA, Laurenzana EM, Carroll FI, et al. Pharmacodynamic mechanisms of monoclonal antibody-based antagonism of (+)-methamphetamine in rats. Eur J Pharmacol. 2003;461:119–28.

    Article  CAS  PubMed  Google Scholar 

  • Byrnes-Blake KA, Laurenzana EM, Landes RD, et al. Monoclonal IgG affinity and treatment time alters antagonism of (+)-methamphetamine effects in rats. Eur J Pharmacol. 2005;521:86–94.

    Article  CAS  PubMed  Google Scholar 

  • Carrera MR, Ashley JA, Zhou B, et al. Cocaine vaccines: antibody protection against relapse in a rat model. Proc Natl Acad Sci U S A. 2000;97:6202–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll FI, Abraham P, Gong PK, et al. The synthesis of haptens and their use for the development of monoclonal antibodies for treating methamphetamine abuse. J Med Chem. 2009;52:7301–9. doi:10.1021/jm901134w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll FI, Blough BE, Pidaparthi RR, et al. Synthesis of mercapto-(+)-methamphetamine haptens and their use for obtaining improved epitope density on (+)-methamphetamine conjugate vaccines. J Med Chem. 2011;54:5221–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook CE, Jeffcoat AR, Hill JM, et al. Pharmacokinetics of methamphetamine self-administered to human subjects by smoking S-(+)-methamphetamine hydrochloride. Drug Metab Dispos. 1993;21:717–23.

    CAS  PubMed  Google Scholar 

  • Cornish KE, Harris AC, LeSage MG, et al. Combined active and passive immunization against nicotine: minimizing monoclonal antibody requirements using a target antibody concentration strategy. Int Immunopharmacol. 2011;11:1809–15. doi:10.1016/j.intimp.2011.07.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruickshank CC, Dyer KR. A review of the clinical pharmacology of methamphetamine. Addiction. 2009;104:1085–99. doi:10.1111/j.1360-0443.2009.02564.x.

    Article  PubMed  Google Scholar 

  • Diagnostics Q. Quest Diagnostics Drug Testing Index TM. 2012. In: www.questdiagnostics.com. http://www.questdiagnostics.com/home/physicians/health-trends/drug-testing. Accessed 24 Mar 2015.

  • Gentry WB, Laurenzana EM, Williams DK, et al. Safety and efficiency of an anti-(+)-methamphetamine monoclonal antibody in the protection against cardiovascular and central nervous system effects of (+)-methamphetamine in rats. Int Immunopharmacol. 2006;6:968–77.

    Article  CAS  PubMed  Google Scholar 

  • Gentry WB, Rüedi-Bettschen D, Owens SM. Development of active and passive human vaccines to treat methamphetamine addiction. Hum Vaccin. 2009;5:206–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hambuchen MD, Rüedi-Bettschen D, Williams DK, et al. Treatment of rats with an anti-(+)-methamphetamine monoclonal antibody shortens the duration of action of repeated (+)-methamphetamine challenges over a one month period. Vaccine. 2014. doi:10.1016/j.vaccine.2014.09.025.

    PubMed  PubMed Central  Google Scholar 

  • Hardin JS, Wessinger WD, Wenger GR, et al. A single dose of monoclonal anti-phencyclidine IgG offers long-term reductions in phencyclidine behavioral effects in rats. J Pharmacol Exp Ther. 2002;302:119–26.

    Article  CAS  PubMed  Google Scholar 

  • Hillhouse MP, Marinelli-Casey P, Gonzales R, et al. Predicting in-treatment performance and post-treatment outcomes in methamphetamine users. Addiction. 2007;102 Suppl 1:84–95. doi:10.1111/j.1360-0443.2007.01768.x.

    Article  PubMed  Google Scholar 

  • Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35:217–38. doi:10.1038/npp.2009.110.

    Article  PubMed  Google Scholar 

  • Kresina TF, Normand J, Khalsa J, et al. Addressing the need for treatment paradigms for drug-abusing patients with multiple morbidities. Clin Infect Dis. 2004;38 Suppl 5:S398–401. doi:10.1086/421403.

    Article  PubMed  Google Scholar 

  • Laurenzana EM, Byrnes-Blake KA, Milesi-Hallé A, et al. Use of anti-(+)-methamphetamine monoclonal antibody to significantly alter (+)-methamphetamine and (+)-amphetamine disposition in rats. Drug Metab Dispos. 2003;31:1320–6. doi:10.1124/dmd.31.11.1320.

    Article  CAS  PubMed  Google Scholar 

  • Laurenzana EM, Hendrickson HP, Carpenter D, et al. Functional and biological determinants affecting the duration of action and efficacy of anti-(+)-methamphetamine monoclonal antibodies in rats. Vaccine. 2009;27:7011–20. doi:10.1016/j.vaccine.2009.09.072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurenzana EM, Stevens MW, Frank JC, et al. Pharmacological effects of two anti-methamphetamine monoclonal antibodies: supporting data for lead candidate selection for clinical development. Hum Vaccin Immunother. 2014. doi:10.4161/hv.29707.

    PubMed  PubMed Central  Google Scholar 

  • Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci. 2004;93:2645–68.

    Article  CAS  PubMed  Google Scholar 

  • Martell B, Orson F, Poling J, et al. Cocaine vaccine for the treatment of cocaine dependence in methadone-maintained patients: a randomized, double-blind, placebo-controlled efficacy trial. Arch Gen Psychiatry. 2009;66:1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell JC, Brecht M-L. Methamphetamine: here we go again? Addict Behav. 2011;36:1168–73. doi:10.1016/j.addbeh.2011.07.017.

    Article  PubMed  PubMed Central  Google Scholar 

  • McMillan DE, Hardwick WC, Li M, et al. Effects of murine-derived anti-methamphetamine monoclonal antibodies on (+)-methamphetamine self-administration in the rat. J Pharmacol Exp Ther. 2004;309:1248–55. doi:10.1124/jpet.103.061762.

    Article  CAS  PubMed  Google Scholar 

  • Mendelson J, Jones RT, Upton R, Jacob P. Methamphetamine and ethanol interactions in humans. Clin Pharmacol Ther. 1995;57:559–68. doi:10.1016/0009-9236(95)90041-1.

    Article  CAS  PubMed  Google Scholar 

  • Mendelson J, Uemura N, Harris D, et al. Human pharmacology of the methamphetamine stereoisomers. Clin Pharmacol Ther. 2006;80:403–20. doi:10.1016/j.clpt.2006.06.013.

    Article  CAS  PubMed  Google Scholar 

  • Newton TF, De La Garza R, Kalechstein AD, et al. Theories of addiction: methamphetamine users’ explanations for continuing drug use and relapse. Am J Addict. 2009;18:294–300. doi:10.1080/10550490902925920.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicosia N, Pacula RL, Kilmer B, et al. The economic cost of methamphetamine use in the United States, 2005. Santa Monica: Rand Corporation; 2009.

    Google Scholar 

  • Owens SM, Atchley WT, Hambuchen MD, et al. Monoclonal antibodies as pharmacokinetic antagonists for the treatment of (+)-methamphetamine addiction. CNS Neurol Disord Drug Targets. 2011;10:892–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owens SM, Zorbas M, Lattin DL, et al. Antibodies against arylcyclohexylamines and their similarities in binding specificity with the phencyclidine receptor. J Pharmacol Exp Ther. 1988;246:472–8.

    CAS  PubMed  Google Scholar 

  • Peterson EC, Gunnell M, Che Y, et al. Using hapten design to discover therapeutic monoclonal antibodies for treating methamphetamine abuse. J Pharmacol Exp Ther. 2007;322:30–9. doi:10.1124/jpet.106.117150.

    Article  CAS  PubMed  Google Scholar 

  • Rivière GJ, Byrnes KA, Gentry WB, Owens SM. Spontaneous locomotor activity and pharmacokinetics of intravenous methamphetamine and its metabolite amphetamine in the rat. J Pharmacol Exp Ther. 1999;291:1220–6.

    PubMed  Google Scholar 

  • Roiko SA, Harris AC, Keyler DE, et al. Combined active and passive immunization enhances the efficacy of immunotherapy against nicotine in rats. J Pharmacol Exp Ther. 2008;325:985–93. doi:10.1124/jpet.107.135111.

    Article  CAS  PubMed  Google Scholar 

  • Rowland M, Tozer TN. Clinical pharmacokinetics. 3rd ed. Baltimore: Williams & Wilkins; 1995.

    Google Scholar 

  • Rüedi-Bettschen D, Wood SL, Gunnell MG, et al. Vaccination protects rats from methamphetamine-induced impairment of behavioral responding for food. Vaccine. 2013;31:4596–602. doi:10.1016/j.vaccine.2013.07.038.

    Article  PubMed  Google Scholar 

  • Schiorring E. Amphetamine induced selective stimulation of certain behaviour items with concurrent inhibition of others in an open-field test with rats. Behaviour. 1971;39:1–17.

    Article  CAS  PubMed  Google Scholar 

  • Segal DS, Mandell AJ. Long-term administration of d-amphetamine: progressive augmentation of motor activity and stereotypy. Pharmacol Biochem Behav. 1974;2:249–55.

    Article  CAS  PubMed  Google Scholar 

  • Sellings LHL, Clarke PBS. Segregation of amphetamine reward and locomotor stimulation between nucleus accumbens medial shell and core. J Neurosci. 2003;23:6295–303.

    CAS  PubMed  Google Scholar 

  • Shoptaw S, Huber A, Peck J, et al. Randomized, placebo-controlled trial of sertraline and contingency management for the treatment of methamphetamine dependence. Drug Alcohol Depend. 2006;85:12–8. doi:10.1016/j.drugalcdep.2006.03.005.

    Article  CAS  PubMed  Google Scholar 

  • State Summaries of Client Admissions Data: Treatment Episode Data Set (TEDS). Substance abuse and mental health services administration. Rockville; 2012. http://wwwdasis.samhsa.gov/webt/newmapv1.htm. Accessed 16 Mar 2015.

  • Stevens MW, Henry RL, Owens SM, et al. First human study of a chimeric anti-methamphetamine monoclonal antibody in healthy volunteers. MAbs. 2014a;6:1649–56. doi:10.4161/19420862.2014.976431.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevens MW, Tawney RL, West CM, et al. Preclinical characterization of an anti-methamphetamine monoclonal antibody for human use. MAbs. 2014b;6:547–55. doi:10.4161/mabs.27620.

    Article  PubMed  Google Scholar 

  • Sulzer D, Sonders MS, Poulsen NW, Galli A. Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol. 2005;75:406–33. doi:10.1016/j.pneurobio.2005.04.003.

    Article  CAS  PubMed  Google Scholar 

  • Tiihonen J, Kuoppasalmi K, Föhr J, et al. A comparison of aripiprazole, methylphenidate, and placebo for amphetamine dependence. Am J Psychiatry. 2007;164:160–2. doi:10.1176/ajp.2007.164.1.160.

    Article  PubMed  Google Scholar 

  • Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84:548–58. doi:10.1038/clpt.2008.170.

    Article  CAS  PubMed  Google Scholar 

  • White SJ, Hendrickson HP, Atchley WT, et al. Treatment with a monoclonal antibody against methamphetamine and amphetamine reduces maternal and fetal rat brain concentrations in late pregnancy. Drug Metab Dispos. 2014;42:1285–91. doi:10.1124/dmd.114.056879.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding Sources

Research funding was provided by the National Institutes of Health; the National Institute on Drug Abuse Grants DA11560, DA028915, and DA031944; the National Center for Advancing Translational Sciences (Grant ULITR000039); and the Arkansas Biosciences Institute (the major research component of the Arkansas Tobacco Settlement Proceeds Act of 2000).

Notes

S. Michael Owens and W. Brooks Gentry are Chief Scientific Officer and Chief Medical Officer, respectively, and have financial interests in InterveXion Therapeutics, LLC, a pharmaceutical biotech company, whose main interest is the development of antibody medications for the treatment of human diseases, including drug abuse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Michael Owens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hambuchen, M.D., Stevens, M.W., Gunnell, M.G., Gentry, W.B., Owens, S.M. (2016). Discovery and Development of an Anti-methamphetamine Monoclonal Antibody for Use in Treating Methamphetamine Abuse. In: Montoya, I. (eds) Biologics to Treat Substance Use Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-23150-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23150-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23149-5

  • Online ISBN: 978-3-319-23150-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics