Skip to main content

Therapeutic Vaccines for Treating Nicotine Addiction

  • Chapter
  • First Online:
Biologics to Treat Substance Use Disorders
  • 826 Accesses

Abstract

Cigarette smoking is responsible for nearly one-half million deaths per year in the United States (USHHS, The Health Consequences of Smoking—50 years of progress. A report of the Surgeon General, 2014). The Centers for Disease Control estimates that the direct healthcare costs attributable to treating smoking and smoking-attributable illness exceed $170 billion per year (CDC, Smoking & Tobacco Use: Fast Facts, 2015). Only one in five smokers achieves long-term abstinence using standard of care pharmacotherapies (Cahill et al. Cochrane Database Syst Rev 4:CD006103, 2012), leaving the majority still smoking and seeking alternatives. New effective medications to treat nicotine addiction are urgently needed.

Therapeutic nicotine vaccines target nicotine in the circulation rather than the nicotinic acetylcholine receptors in the brain. Nicotine-specific antibodies elicited by vaccination alter the pharmacokinetics (PK) of nicotine, slowing and reducing its entry into the brain and attenuating its reinforcing effects by binding nicotine in the blood (Gorelick, Future Med Chem 4(2):227–243, 2012). Extensive preclinical and clinical research has been conducted on nicotine conjugate vaccines with mixed results (Hartmann-Boyce et al. Cochrane Database Syst Rev 8:CD007072, 2012). In phase II studies of two first-generation nicotine vaccines, NicQβ and NicVAX, high-antibody levels were elicited in approximately a third of the smokers vaccinated. These high-antibody levels were significantly associated with long-term abstinence (Cornuz et al. PLoS One 3(6):2547, 2008; Hatsukami et al. Clin Pharmacol Ther 89(3):392–399, 2011). Inconsistent with these findings, a pair of large phase III studies of NicVAX (each n = ~1000) showed no statistically significant difference from placebo as an aid to smoking cessation treatment in the intent-to-treat population (Fahim et al. CNS Neurol Disord Drug Targets Review 8:905–915, 2011; Fahim et al. Expert Rev Vaccines 12(3):333–342, 2013). Notwithstanding these negative results, a correlation between high-antibody response and long-term abstinence was identified in post hoc analyses of the phase III studies of NicVAX (Fahim and Kalnik Personalized drug treatment methods. PCT/US, Patent No. PCT/US2011/061229 US20110182918, 2012).

Furthermore, in vivo studies of nicotine monoclonal antibodies isolated from vaccinated mice (Keyler et al. Drug Metab Dispos 33(7):1056–1061, 2005) and humans (Beerli et al. PNAS 105(38):14336–14341, 2008) illuminate the importance of optimizing affinity and avidity (avidity is often referred to as “functional affinity”; thus “affinity” will be used as shorthand throughout this chapter to encompass affinity and avidity) of next-generation vaccines. A consensus has emerged that high levels of high-affinity nicotine-specific antibodies elicited by vaccination across all individuals are a prerequisite for success (Fahim et al. CNS Neurol Disord Drug Targets Review 8:905–915, 2011; Pravetoni et al. Biochem Pharmacol. 83(4):543–550, 2012; McCluskie et al. Int Immunopharmacol 16(1):50–56, 2013a; Pryde et al. PLoS One 8(10), e76557, 2013). Second-generation nicotine vaccines with optimized haptens (Moreno et al. Mol Pharm 7(2):431–441, 2010; Lockner et al. J Med Chem, 58(2):1005–1011, 2015), linkers, conjugation (Pryde et al. PLoS One 8(10), e76557, 2013; McCluskie et al. Int Immunopharmacol 16(1):50–6, 2015), and novel potent adjuvants (Davis et al. NIC7-DT, A novel anti-nicotine vaccine, induces better functional antibody responses in mice compares to a Nic-QBeta Mimetic, Abstract O10, 2012; Pittet et al. J Immunol 188, 2012; McCluskie et al. Int Immunopharmacol 16(1):50–56, 2013a; McCluskie et al. A novel anti-nicotine vaccine, shows significantly superior function in non-human primates (NHP) compared to a CYT002-NICQB mimetic, Abstract PA13-4, 2013b) are being actively developed. Based on extensive preclinical optimization of the vaccine design, the addition of a potent proprietary adjuvant and compelling results in both rodent and non-human primate animal models, NIC7 has entered clinical testing (Pfizer, phase I: NCT01672645) with results anticipated in 2016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The IgG class of immunoglobulins are the vast proportion of Ig’s elicited by the first generation of nicotine conjugate vaccines.

  2. 2.

    The nicotine affinity of the antibody binding to nicotine is expressed throughout this chapter as the equilibrium dissociation rate constant at which 50 % of the nicotine binding sites are saturated (lower values of K d represent higher affinities).

  3. 3.

    NIC7-001 is comprised of a nicotine-hapten antigen (NIC7; pyridine 5C-position linker) conjugated to CRM (~15 haptens/CRM).

Bibliography

  • Bachmann M, Jennings G. Therapeutic vaccines for chronic diseases: successes and technical challenges. Phil Trans R Soc B. 2011;366:2815–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beerli R, et al. Isolation of human monoclonal antibodies by mammalian cell display. Proc Natl Acad Sci U S A. 2008;105(38):14336–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benowitz, NL Clinical pharmacology of nicotine: implications for understanding, preventing, and treating tobacco addiction. Clin Pharmacol Ther. 2008 Apr;83(4):531-41.

    Google Scholar 

  • Bonese K, et al. Changes in heroin self-administration by a rhesus monkey after morphine immunisation. Nature. 1974;252:808–10.

    Article  Google Scholar 

  • Cahill K, Stead L, Lancaster T. Nicotine receptor partial agonists for smoking cessation. Cochrane Database Syst Rev. 2012;4:CD006103.

    Google Scholar 

  • Carrera M, et al. Investigations using immunization to attenuate the psychoactive effects of nicotine. Bioorg Med Chem. 2004;12:563–70.

    Article  CAS  PubMed  Google Scholar 

  • CDC. Smoking & Tobacco use: fast facts. [Online]. 2015. Available at: http://www.cdc.gov/tobacco/data_statistics/fact_sheets/fast_facts/index.htm#cost. Accessed 4 July 2015.

  • Cerny E, et al. Preclinical development of a vaccine ‘against smoking’. Onkologie. 2002;25(5):406–11.

    CAS  PubMed  Google Scholar 

  • Cornuz J, et al. A vaccine against nicotine for smoking cessation: a randomized controlled trial. PLoS One. 2008;3(6):2547.

    Article  Google Scholar 

  • Davis H, et al. NIC7-DT, a novel anti-nicotine vaccine, induces better functional antibody responses in mice compares to a Nic-QBeta Mimetic. Society for Research on Nicotine and Tobacco: XIV annual meeting of the SRNT Europe, Helsinki. 2012. p. Abstract O10.

    Google Scholar 

  • de Villiers S, et al. Active immunization against nicotine suppresses nicotine-induced dopamine release in the rat nucleus accumbens shell. Respiration. 2002;69(3):247–53.

    Article  PubMed  Google Scholar 

  • deWit H, Zacny J. Abuse potential of nicotine replacement therapies. CNS Drugs. 1995;4(6):456–68.

    Article  Google Scholar 

  • Fahim R, Kalnik M. Personlized drug treatment methods. PCT/US, Patent No. PCT/US2011/061229 US20110182918. 2012.

    Google Scholar 

  • Fahim R, Kessler P, Fuller S, Kalnik M. Nicotine vaccines. CNS Neurol Disord Drug Targets Rev. 2011;8:905–15.

    Article  Google Scholar 

  • Fahim R, Kessler P, Kalnik M. Therapeutic vaccines against tobacco addiction. Expert Rev Vaccines. 2013;12(3):333–42.

    Article  CAS  PubMed  Google Scholar 

  • Fraser C, et al. Generation of a universal CD4 memory T cell recall peptide effective in humans, mice and non-human primates. Vaccine. 2014;32(24):2896–903.

    Article  CAS  PubMed  Google Scholar 

  • Gonzales D, et al. Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, vs sustained-release bupropion and placebo for smoking cessation: a randomized controlled trial. JAMA. 2006;296(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  • Gorelick DA. Pharmacokinetic strategies for treatment of drug overdose and addiction. Future Med Chem. 2012;4(2):227–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann-Boyce J, Cahill K, Hatsukami D, Cornuz J. Nicotine vaccines for smoking cessation. Cochrane Database Syst Rev. 2012;(8):CD007072.

    Google Scholar 

  • Hatsukami D, et al. Immunogenicity and smoking-cessation outcomes for a novel nicotine immunotherapeutic. Clin Pharmacol Ther. 2011;89(3):392–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henningfield J, Keenan R. Nicotine delivery kinetics and abuse liability. J Consult Clin Psychol. 1993;61(5):743–50.

    Article  CAS  PubMed  Google Scholar 

  • Henningfield J, Miyasato K, Jasinski D. Abuse liability and pharmacodynamic characteristics of intravenous and inhaled nicotine. J Pharmacol Exp Ther. 1985;234(1):1–12.

    CAS  PubMed  Google Scholar 

  • Hicks M, et al. AAV-directed persistent expression of a gene encoding anti-nicotine antibody for smoking cessation. Sci Transl Med. 2012;4(140):140ra87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hieda Y, et al. Active immunization alters the plasma nicotine concentration in rats. J Pharmacol Exp Ther. 1997;283(3):1076–81.

    CAS  PubMed  Google Scholar 

  • Hieda Y, et al. Immunization of rats reduces nicotine distribution to brain. Psychopharmacology (Berl). 1999;143(2):150–7.

    Article  CAS  Google Scholar 

  • Hughes J, Callas P. Is delaying a quit attempt associated with less success? Nicotine Tob Res. 2011;13(12):1228–32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Isomura S, Wirsching P, Janda K. An immunotherapeutic program for the treatment of nicotine addiction: hapten design and synthesis. J Org Chem. 2001;66:4115–21.

    Article  CAS  PubMed  Google Scholar 

  • Jalah R, et al. Efficacy, but Not antibody titer or affinity, of a heroin hapten conjugate vaccine correlates with increasing hapten densities on tetanus toxoid, but not on CRM197 carriers. Bioconjug Chem. 2015;26:1041–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston L. NIH Research Portfolio online reporting tools: project information 1U01DA037592-01. [Online]. 2014. Available at: http://projectreporter.nih.gov/project_info_description.cfm?aid=8707101&icde=25254746&ddparam=&ddvalue=&ddsub=&cr=2&csb=default&cs=ASC. Accessed 5 July 2015.

  • Jorenby D, et al. Efficacy of varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, vs placebo or sustained-release bupropion for smoking cessation: a randomized controlled trial. JAMA. 2006;296(1):56–63.

    Article  CAS  PubMed  Google Scholar 

  • Keyler D, et al. Monoclonal nicotine-specific antibodies reduce nicotine distribution to brain in rats: dose- and affinity-response relationships. Drug Metab Dispos. 2005;33(7):1056–61.

    Article  CAS  PubMed  Google Scholar 

  • Keyler D, et al. Enhanced immunogenicity of a bivalent nicotine vaccine. Int Immunopharmacol. 2008;8:1589–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinsey B. Vaccines against drugs of abuse: where are we now? Ther Adv Vaccines. 2014;2(4):106–17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kosten T, Domingo C. Can you vaccinate against substance abuse? Expert Opin Biol Ther. 2013;13(8):1093–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindblom N, et al. Active immunization against nicotine prevents reinstatement of nicotine-seeking behavior in rats. Respiration. 2002;69(3):254–60.

    Article  CAS  PubMed  Google Scholar 

  • Lockner JW, et al. A conjugate vaccine using enantiopure hapten imparts superior nicotine-binding capacity J Med Chem. 2015 Jan 22;58(2):1005–11.

    Google Scholar 

  • Maurer P, et al. A therapeutic vaccine for nicotine dependence: preclinical efficacy, and phase I safety and Immunogenicity. Eur J Immunol. 2005;35:2031–40.

    Article  CAS  PubMed  Google Scholar 

  • McCluskie M, et al. Enhancing immunogenicity of a 3′aminomethylnicotine-DT-conjugate anti-nicotine vaccine with CpG adjuvant in mice and non-human primates. Int Immunopharmacol. 2013a;16(1):50–6.

    Article  CAS  PubMed  Google Scholar 

  • McCluskie M, et al. A novel anti-nicotine vaccine, shows significantly superior function in non-human primates (NHP) compared to a CYT002-NICQB mimetic. 19th annual meeting of the Society for Research on Nicotine and Tobacco, Boston. 2013b. p. Abstract PA13-4.

    Google Scholar 

  • McCluskie M, et al. Molecular attributes of conjugate antigen influence function of antibodies induced by anti-nicotine vaccine in mice and non-human primates. Int Immunopharmacol. 2015;16(1):50–6.

    Article  Google Scholar 

  • Moreno A, Janda K. Immunopharmacotherapy: vaccination strategies as a treatment for drug abuse and dependence. Pharmacol Biochem Behav. 2009;92(2):199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno A, et al. A critical evaluation of a nicotine vaccine within a self-administration behavioral model. Mol Pharm. 2010;7(2):431–41.

    Article  CAS  PubMed  Google Scholar 

  • Nelson R, et al. Effect of rate of administration on subjective and physiological effects of intravenous cocaine in humans. Drug Alcohol Depend. 2006;82(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  • NIDA, 2011–2015. NIH Research Online Reporting Tool Query “nicotine vaccines”. [Online]. Available at: http://projectreporter.nih.gov/reporter.cfm. Accessed 5 July 2015.

  • Pentel P, LeSage M. New directions in nicotine vaccine design and use. Adv Pharmacol. 2014;69:553–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pentel PR, et al. A nicotine conjugate vaccine reduces nicotine distribution to brain and attenuates its behavioral and cardiovascular effects in rats. Pharmacol Biochem Behav. 2000;65(1):191–8.

    Article  CAS  PubMed  Google Scholar 

  • Pittet L, et al. Development and preclinical evaluation of SEL-068, a novel targeted Synthetic Vaccine Particle (tSVP™) for smoking cessation and relapse prevention that generates high titers of antibodies against nicotine. J Immunol. 2012;188(Meeting Abstract Supplement):75.11.

    Google Scholar 

  • Porchet H, Benowitz N, Sheiner L, Copeland J. Apparent tolerance to the acute effect of nicotine results in part from distribution kinetics. J Clin Invest. 1987;80(5):1466–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pravetoni M, et al. Structurally distinct nicotine immunogens elicit antibodies with non-overlapping specificities. Biochem Pharmacol. 2012;83(4):543–50.

    Article  CAS  PubMed  Google Scholar 

  • Pryde D, et al. Selection of a novel anti-nicotine vaccine: influence of antigen design on antibody function in mice. PLoS One. 2013;8(10), e76557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raupach T, Hoogsteder PHJ, van Schayck C. Nicotine vaccines to assist with smoking cessation: current status of research. Drugs. 2012;72(4):e1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roiko SA, Harris AC, Keyler DE, Lesage MG, Zhang Y, Pentel PR. Combined active and passive immunization enhances the efficacy of immunotherapy against nicotine in rats. J Pharmacol Exp Ther. 2008;325(3):985–93.

    Article  CAS  PubMed  Google Scholar 

  • Selecta Biosciences. Selecta biosciences: technology platform. [Online]. 2015. Available at: http://www.selectabio.com/technology-platform/index.cfm. Accessed 5 July 2015.

  • Stitzer M, de Wit H. Abuse liability of nicotine. In: Benowitz NL, editor. Nicotine safety and toxicity. New York: Oxford University Press; 1998. p. 119–31.

    Google Scholar 

  • USHHS. The health consequences of smoking—50 years of progress. A report of the surgeon general. [Online]. 2014. Available at: http://www.surgeongeneral.gov/library/reports. Accessed 4 July 2015.

  • Wagena E, de Vos A, Horwith G, van Schayck C. The immunogenicity and safety of a nicotine vaccine in smokers and nonsmokers: results of a randomized, placebo-controlled phase 1/2 trial. Nicotine Tob Res. 2008;10(1):213–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew W. Kalnik PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kalnik, M.W. (2016). Therapeutic Vaccines for Treating Nicotine Addiction. In: Montoya, I. (eds) Biologics to Treat Substance Use Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-23150-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23150-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23149-5

  • Online ISBN: 978-3-319-23150-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics