Reconfigurable Packet FEC Architecture for Mobile Networks

  • Wael M. El-MedanyEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9228)


This paper presents a reconfigurable hardware architecture of Forward Error Correction (FEC) coding algorithm for mobile networks, with high throughput on Field Programmable Gate Array (FPGA). The design can be reconfigured for different message length and different generator number, the encoder and decoder has been described using VHDL (VHSIC Hardware Description Language). The decoder has the ability to detect and correct different types and different numbers of errors based on the message length and the length of redundant data. The design has been simulated and tested using ModelSim PE student edition 10.4. Spartan 3 FPGA starter kit from Xilinx has been used for implementing and testing the design in a hardware level.


FPGA FEC VHDL Mobile networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Islam, M.R.: Error correction codes in wireless sensor network: An energy aware approach. International Journal of Computer and Information Engineering 4, 59–64 (2010)Google Scholar
  2. 2.
    Etzion, T., Vardy, A.: Error-correcting codes in projective space. IEEE Transactions on Information Theory 57, 1165–1173 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Naseer, R., Draper, J.: DEC ECC design to improve memory reliability in sub-100nm technologies. In: 15th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2008, pp. 586–589 (2008)Google Scholar
  4. 4.
    Frigo, M., Stewart, L.C.: Error-correcting code. Google Patents (2014)Google Scholar
  5. 5.
    Egner, S.: Error correcting code. Google Patents (2011)Google Scholar
  6. 6.
    Morelos-Zaragoza, R.H.: The art of error correcting coding. John Wiley & Sons (2006)Google Scholar
  7. 7.
    Huffman, W.C., Pless, V.: Fundamentals of error-correcting codes. Cambridge University Press (2003)Google Scholar
  8. 8.
    Chang, F., Onohara, K., Mizuochi, T.: Forward error correction for 100 G transport networks. Communications Magazine, IEEE 48, S48–S55 (2010)CrossRefGoogle Scholar
  9. 9.
    Brasche, G., Walke, B.: Concepts, services, and protocols of the new GSM phase 2+ general packet radio service. Communications Magazine, IEEE 35, 94–104 (1997)CrossRefGoogle Scholar
  10. 10.
    Cai, J., Goodman, D.: General packet radio service in GSM. Communications Magazine, IEEE 35, 122–131 (1997)Google Scholar
  11. 11.
    Holma, H., Toskala, A.: HSDPA/HSUPA for UMTS: high speed radio access for mobile communications. John Wiley & Sons (2007)Google Scholar
  12. 12.
    Bettstetter, C., Vogel, H.-J., Eberspacher, J.: GSM phase 2+ general packet radio service GPRS: Architecture, protocols, and air interface. Communications Surveys & Tutorials, IEEE 2, 2–14 (1999)CrossRefGoogle Scholar
  13. 13.
    Xiao-kai, W., Yong-jin, S., Da-jin, C., Bing-he, M., Qi-li, Z.: Transfer Error and Correction Approach in Mobile Network. Physics Procedia 25, 1270–1276 (2012)CrossRefGoogle Scholar
  14. 14.
    Zhang, Y., Song, H., Burd, G.: QC-LDPC decoder with list-syndrome decoding. Google Patents (2012)Google Scholar
  15. 15.
    Schmidt, G., Sidorenko, V.R., Bossert, M.: Syndrome decoding of Reed-Solomon codes beyond half the minimum distance based on shift-register synthesis. IEEE Transactions on Information Theory 56, 5245–5252 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Computer Engineering Department, College of Information TechnologyUniversity of BahrainZallaqBahrain

Personalised recommendations