Skip to main content

Persistence Probabilities and Exponents

  • Chapter
Lévy Matters V

Part of the book series: Lecture Notes in Mathematics ((LEVY,volume 2149))

Abstract

This article deals with the asymptotic behavior as \(t \rightarrow +\infty \) of the survival function \(\mathbb{P}[T > t]\), where T is the first passage time above a non negative level of a random process starting from zero. In many cases of physical significance, the behavior is of the type \(\mathbb{P}[T > t] = t^{-\theta +o(1)}\) for a known or unknown positive parameter \(\theta\) which is called the persistence exponent. The problem is well understood for random walks or Lévy processes but becomes more difficult for integrals of such processes, which are more related to physics. We survey recent results and open problems in this field.

AMS Subject Classification 2000: 60F99, 60G10, 60G15, 60G18, 60G50, 60G52, 60K35, 60K40

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Asmussen, Ruin Probabilities (Springer, New York, 2000)

    Google Scholar 

  2. F. Aurzada, On the one-sided exit problem for fractional Brownian motion. Electron. Commun. Probab. 16, 392–404 (2011)

    MathSciNet  MATH  Google Scholar 

  3. F. Aurzada, C. Baumgarten, Survival probabilities for weighted random walks. ALEA Lat. Am. J. Probab. Math. Stat. 8, 235–258 (2011)

    MathSciNet  MATH  Google Scholar 

  4. F. Aurzada, C. Baumgarten, Persistence of fractional Brownian motion with moving boundaries and applications. J. Phys. A 46(12), 125007, 12 (2013)

    Google Scholar 

  5. F. Aurzada, S. Dereich, Universality of the asymptotics of the one-sided exit problem for integrated processes. Ann. Inst. Henri Poincaré Probab. Stat. 49, 236–251 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Aurzada, N. Guillotin-Plantard, Persistence exponent for discrete-time, time-reversible processes (2015, preprint). arXiv:1502.06799

    Google Scholar 

  7. F. Aurzada, T. Kramm, First exit of Brownian motion from a one-sided moving boundary, in High Dimensional Probability VI: The Banff Volume. Progress in Probability, vol. 66 (Springer, Berlin, 2013), pp. 215–219

    Google Scholar 

  8. F. Aurzada, T. Kramm, The first passage time problem over a moving boundary for asymptotically stable Lévy processes. J. Theor. Probab. doi: 10.1007/s10959-015-0596-x

    Google Scholar 

  9. F. Aurzada, S. Dereich, M. Lifshits, Persistence probabilities for a bridge of an integrated simple random walk. Probab. Math. Stat. 34(1), 1–22 (2014)

    MathSciNet  MATH  Google Scholar 

  10. F. Aurzada, T. Kramm, M. Savov, First passage times of Lévy processes over a one-sided moving boundary. Markov Process. Relat. Fields. 21(1), 1–38 (2015)

    Google Scholar 

  11. C. Baumgarten, Survival probabilities of autoregressive processes. ESAIM Probab. Stat. 18, 145–170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Baumgarten, Survival probabilities of some iterated processes. Probab. Math. Stat. 34(2), 293–316 (2014)

    MathSciNet  MATH  Google Scholar 

  13. J. Bertoin, Lévy Processes (Cambridge University Press, Cambridge, 1996)

    MATH  Google Scholar 

  14. J. Bertoin, The inviscid Burgers equation with Brownian initial velocity. Commun. Math. Phys. 193(2), 397–406 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Bertoin, R.A. Doney, Spitzer’s condition for random walks and Lévy processes. Ann. Inst. Henri Poincaré Probab. Stat. 33, 167–178 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. N.H. Bingham, Maxima of sums of random variables and suprema of stable processes. Z. Wahr. Verw. Geb. 26, 273–296 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  17. N.H. Bingham, Fluctuation theory in continuous time. Adv. Appl. Probab. 7, 705–766 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. N.H. Bingham, Random walk and fluctuation theory, in Stochastic Processes: Theory and Methods, ed. by D.N. Shanbhag et al. Handbook of Statistics, vol. 19 (Elsevier, Amsterdam, 2001), pp. 171–213

    Google Scholar 

  19. N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation (Cambridge University Press, Cambridge, 1987)

    Book  MATH  Google Scholar 

  20. A.J. Bray, P. Gonos, Survival of a diffusing particle in a transverse shear flow: a first passage problem with continuously varying persistence exponent. J. Phys. A Math. Gen. 37, 361–366 (2004)

    Article  MathSciNet  Google Scholar 

  21. A. Bray, S. Majumdar, G. Schehr, Persistence and first-passage properties in non-equilibrium systems. Adv. Phys. 62(3), 225–361 (2013)

    Article  Google Scholar 

  22. Y. Brenier, E. Grenier, Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 35(6), 2317–2328 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. T.W. Burkhardt, Semiflexible polymer in the half-plane and statistics of the integral of the Brownian curve. J. Phys. A Math. Gen. 26, 1157–1162 (1993)

    Article  MathSciNet  Google Scholar 

  24. F. Caravenna, J.-D. Deuschel, Pinning and wetting transition for (1+1)-dimensional fields with Laplacian interaction. Ann. Probab. 36(6), 2388–2433 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. F. Castell, N. Guillotin-Plantard, F. Pène, B. Schapira, On the one-sided exit problem for stable processes in random scenery. Electron. Commun. Probab. 18(33), 1–7 (2013)

    MathSciNet  Google Scholar 

  26. F. Castell, N. Guillotin-Plantard, F. Watbled, Persistence exponent for random processes in Brownian scenery (2014, preprint). arXiv:1407.0364

    Google Scholar 

  27. M. Constantin, C. Dasgupta, P. Punyindu Chatraphorn, S.N. Majumdar, S. Das Sarma, Persistence in nonequilibrium surface growth. Phys. Rev. E 69, 061608 (22 pp.) (2004)

    Google Scholar 

  28. A. Dembo, J. Ding, Persistence probabilities for auto-regressive sequences. Forthcoming. http://www.statweb.stanford.edu/~adembo/

  29. A. Dembo, S. Mukherjee, No zero-crossings for random polynomials and the heat equation. Ann. Probab. 43, 85–118 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Dembo, B. Poonen, Q.-M. Shao, O. Zeitouni, Random polynomials having few or no real zeros. J. Am. Math. Soc. 15(4), 857–892 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Dembo, J. Ding, F. Gao, Persistence of iterated partial sums. Ann. Inst. Henri Poincaré Probab. Stat. 49(3), 873–884 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Denisov, V. Wachtel, Random walks in cones. Ann. Probab. 43(3), 992–1044 (2015)

    Article  MathSciNet  Google Scholar 

  33. D. Denisov, V. Wachtel, Exact asymptotics for the instant of crossing a curve boundary by an asymptotically stable random walk (2014, preprint). arXiv:1403.5918

    Google Scholar 

  34. D. Denisov, V. Wachtel, Exit times for integrated random walks. Ann. Inst. Henri Poincaré Probab. Statist. 51(1), 167–193 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Devulder, Persistence of some additive functionals of Sinai’s walk (2014, preprint). arXiv:1402.2267

    Google Scholar 

  36. R.A. Doney, On the asymptotic behaviour of first passage times for transient random walks. Probab. Theory Relat. Fields 81, 239–246 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  37. R.A. Doney, Spitzer’s condition and ladder variables in random walks. Probab. Theory Relat. Fields 101, 577–580 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. R.A. Doney, Fluctuation Theory for Lévy Processes. Lecture Notes in Mathematics, vol. 1897 (Springer, Berlin, 2007)

    Google Scholar 

  39. H. Dym, H.-P. McKean, Fourier Series and Integrals (Academic, New York, 1972)

    MATH  Google Scholar 

  40. S. Engelke, J.H.C. Woerner, A unifying approach to fractional Lévy processes. Stoch. Dyn. 13(2), 1250017 (19 pp.) (2013)

    Google Scholar 

  41. N. Feldheim, O.N. Feldheim, Long gaps between sign-changes of gaussian stationary processes. Int. Math. Res. Not. doi: 10.1093/imrn/rnu020

    Google Scholar 

  42. W. Feller, An Introduction to Probability Theory and Its Applications, vol. II (Wiley, New York, 1971)

    MATH  Google Scholar 

  43. D.A. Freedman, Survival analysis: a primer. Am. Stat. 62(2), 110–119 (2008)

    Article  Google Scholar 

  44. F. Gao, Z. Liu, X. Yang, Conditional persistence of Gaussian random walks. Electron. Commun. Probab. 19(70), 1–9 (2014). http://www.emis.de/journals/EJP-ECP/article/view/3587.html

  45. M. Goldman, On the first passage of the integrated Wiener process. Ann. Math. Stat. 42(6), 2150–2155 ( 1971)

    Article  MATH  Google Scholar 

  46. Y.P. Gor’kov, A formula for the solution of a certain boundary value problem for the stationary equation of Brownian motion. Soviet. Math. Dokl. 16, 904–908 (1975)

    MATH  Google Scholar 

  47. P. Groeneboom, G. Jongbloed, J.A. Wellner, Integrated Brownian motion, conditioned to be positive. Ann. Probab. 27, 1283–1303 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  48. K. Handa, A remark on shocks in inviscid Burgers’ turbulence, in Nonlinear Waves and Weak Turbulence with Applications in Oceanography and Condensed Matter Physics, ed. by Fitzmaurice et al. Progress in Nonlinear Differential Equations and Their Applications, vol. 11 (Birkhäuser, Boston, MA, 1993), pp. 339–345

    Google Scholar 

  49. Y. Isozaki, Asymptotic estimates for the distribution of additive functionals of Brownian motion by the Wiener-Hopf factorization method. J. Math. Kyoto Univ. 36(1), 211–227 (1996)

    MathSciNet  MATH  Google Scholar 

  50. Y. Isozaki, S. Kotani, Asymptotic estimates for the first hitting time of fluctuating additive functionals of Brownian motion. Sémin. Probab. XXXIV, 374–387 (2000)

    Google Scholar 

  51. Y. Isozaki, S. Watanabe, An asymptotic formula for the Kolmogorov diffusion and a refinement of Sinai’s estimates for the integral of Brownian motion. Proc. Jpn. Acad. Ser. A 70(9), 271–276 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  52. N.C. Jain, W.E. Pruitt, Lower tail probability estimates for subordinators and nondecreasing random walks. Ann. Probab. 15(1), 75–101 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  53. A.W. Janicki, W.A. Woyczynski, Hausdorff dimension of regular points in stochastic Burgers flows with Lévy α-stable initial data. J. Stat. Phys. 86(1–2), 277–299 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  54. J.H.B. Kemperman, The Passage Problem for a Stationary Markov Chain (University of Chicago Press, Chicago, 1961)

    Google Scholar 

  55. H. Kesten, Sums of independent random variables without moment conditions. Ann. Math. Stat. 43(3), 701–732 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  56. A.N. Kolmogoroff, Zufällige Bewegungen (zur Theorie der brownschen Bewegung). Ann. Math. (2) 35(1), 116–117 (1934)

    Google Scholar 

  57. M. Kwaśnicki, J. Małecki, M. Ryznar, Suprema of Lévy processes. Ann. Probab. 41(3B), 2047–2065 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  58. M. Kwaśnicki, J. Małecki, M. Ryznar, First passage times for subordinate Brownian motions. Stoch. Process. Appl. 123(5), 1820–1850 (2013)

    Article  MATH  Google Scholar 

  59. A. Lachal, Sur le premier instant de passage de l’intégrale du mouvement brownien. Ann. Inst. Henri Poincaré Probab. Stat. 27(3), 385–405 (1991)

    MathSciNet  MATH  Google Scholar 

  60. H. Larralde, A first passage time distribution for a discrete version of the Ornstein-Uhlenbeck process. J. Phys. A 37(12), 3759–3767 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  61. W.V. Li, Q.-M. Shao, A normal comparison inequality and its application. Probab. Theory Relat. Fields 122(1), 494–508 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  62. W.V. Li, Q.-M. Shao, Lower tail probabilities for Gaussian processes. Ann. Probab. 32(1), 216–242 (2004)

    MathSciNet  MATH  Google Scholar 

  63. S.N. Majumdar, Persistence in nonequilibrium systems. Curr. Sci. 77(3), 370–375 (1999)

    Google Scholar 

  64. S.N. Majumdar, A.J. Bray, Spatial persistence of fluctuating interfaces. Phys. Rev. Lett. 86, 3700–3703 (2001)

    Article  Google Scholar 

  65. H.P. McKean, A winding problem for a resonator driven by a white noise. J. Math. Kyoto Univ. 2, 227–235 (1963)

    MathSciNet  MATH  Google Scholar 

  66. R. Metzler, G. Oshanin, S. Redner, First-Passage Phenomena and Their Applications (World Scientific, Singapore, 2014)

    Book  MATH  Google Scholar 

  67. G.M. Molchan, Maximum of a fractional Brownian motion: probabilities of small values. Commun. Math. Phys. 205(1), 97–111 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  68. G.M. Molchan, Unilateral small deviations of processes related to the fractional Brownian motion. Stoch. Process. Appl. 118 (11), 2085–2097 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  69. G.M. Molchan, Survival exponents for some Gaussian processes. Int. J. Stoch. Anal. 2012, Article ID 137271 (2012)

    MathSciNet  Google Scholar 

  70. G.M. Molchan, A. Khokhlov, Small values of the maximum for the integral of fractional Brownian motion. J. Stat. Phys. 114(3–4), 923–946 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  71. A. Novikov, N. Kordzakhia, Martingales and first passage times of AR(1) sequences. Stochastics 80, 197–210 (2008)

    MathSciNet  MATH  Google Scholar 

  72. G. Oshanin, A. Rosso, G. Schehr, Anomalous fluctuations of currents in Sinai-type random chains with strongly correlated disorder. Phys. Rev. Lett. 110, 100602 (2013)

    Article  Google Scholar 

  73. C. Profeta, T. Simon, Persistence of integrated stable processes. Probab. Theory Relat. Fields. 162(3), 463–485 (2015)

    Article  MathSciNet  Google Scholar 

  74. C. Profeta, T. Simon, Windings of the stable Kolmogorov process. ALEA Lat. Am. J. Probab. Math. Stat. 12(1), 115–127 (2015)

    MathSciNet  Google Scholar 

  75. P. Revesz, Random Walks in Random and Non-random Environments (World Scientific, Singapore, 1990)

    Book  Google Scholar 

  76. G. Samorodnitsky, M.S. Taqqu, Stable Non-Gaussian Random Processes (Chapman & Hall, New York, 1994)

    MATH  Google Scholar 

  77. G. Schehr, S.N. Majumdar, Statistics of the number of zero crossings: from random polynomials to the diffusion equation. Phys. Rev. Lett. 99, 603–606 (2007)

    Article  Google Scholar 

  78. G. Schehr, S.N. Majumdar, Real roots of random polynomials and zero crossing properties of diffusion equation. J. Stat. Phys. 132(2), 235–273 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  79. Z.-S. She, E. Aurell, U. Frisch, The inviscid Burgers equation with initial data of Brownian type. Commun. Math. Phys. 148(3), 623–641 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  80. T. Simon, The lower tail problem for homogeneous functionals of stable processes with no negative jumps. ALEA Lat. Am. J. Probab. Math. Stat. 3, 165–179 (2007)

    MathSciNet  MATH  Google Scholar 

  81. T. Simon, On the Hausdorff dimension of regular points of inviscid Burgers equation with stable initial data. J. Stat. Phys. 131(4), 733–747 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  82. Y.G. Sinai, Distribution of some functionals of the integral of a random walk. Theor. Math. Phys. 90(3), 219–241 (1992)

    Article  MathSciNet  Google Scholar 

  83. Y.G. Sinai, Statistics of shocks in solutions of inviscid Burgers equation. Commun. Math. Phys. 148(3), 601–621 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  84. V. Vysotsky, Clustering in a stochastic model of one-dimensional gas. Ann. Appl. Probab. 18(3), 1026–1058 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  85. V. Vysotsky, On the probability that integrated random walks stay positive. Stoch. Process. Appl. 120(7), 1178–1193 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  86. V. Vysotsky, Persistence of iterated random walks (2012). https://math.la.asu.edu/~vysotsky/index_files/iterated.pdf

  87. V. Vysotsky, Positivity of integrated random walks. Ann. Inst. Henri Poincaré Probab. Statist. 50(1), 195–213 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  88. E. Wong, Some results concerning the zero-crossings of Gaussian noise. SIAM J. Appl. Math. 14(6), 1246–1254 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  89. V.M. Zolotarev, One-Dimensional Stable Distributions (AMS, Providence, 1986)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the DFG Emmy Noether research program and the grant ANR-09-BLAN-0084-01 Autosimilaires. The authors would like to thank R.A. Doney, S.N. Majumdar, A.A. Novikov and the referees for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Aurzada .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aurzada, F., Simon, T. (2015). Persistence Probabilities and Exponents. In: Lévy Matters V. Lecture Notes in Mathematics(), vol 2149. Springer, Cham. https://doi.org/10.1007/978-3-319-23138-9_3

Download citation

Publish with us

Policies and ethics