Advertisement

Configurable CRC Error Detection Model for Performance Analysis of Polynomial: Case Study for the 32-Bits Ethernet Protocol

  • Vinaya R. Gad
  • Rajendra S. GadEmail author
  • Gourish M. Naik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9247)

Abstract

Almost every form of digital information exchange can introduce communication errors. In order to overcome the inherent inaccuracy of information transmission, a few methods for error detection and correction have been developed. Cyclic Redundancy check Codes (CRCs) are used in embedded networks for effective error detection. Paper discusses the development of the simulation model for the configurable CRC-polynomials performance analysis over Binary Symmetric Channels (BSCs). This paper presents a novel model which can be used to investigate several classes of CRC polynomials codes with ‘n’ parity bits varying from ‘1’ to ‘64’. It also discuss the hardware implementation on Altera’s FPGA Stratix II GX device ‘EP2SGX90FF1508C3’ for CRC-32 ‘IEEE-802’ and suggest the indirect methodology of CRC-performance using Packet Error Rate (PER) parameter using Altera TSE MegaCore function that supports 10/100/1000 Mbps Ethernet over 1000Base-LX physical media. It is proposed to search good CRC codes of 32, 40 and 64 bit and studying performance for maximum payload over Ethernet protocol.

Keywords

CRC Gigabit Ethernet BER PER FPGA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith, M.J.S.: Application-Specific Integrated Circuits. Addison-Wesley Longman (January 1998)Google Scholar
  2. 2.
    Tanenbaum, A.S.: Computer Networks, 2nd edn. Prentice Hall (1988)Google Scholar
  3. 3.
    Koopman, P.: 32-Bit cyclic redundancy codes for internet applications. In: The International Conference on Dependable Systems and Networks (DSN) (2002)Google Scholar
  4. 4.
    Koopman, P., Chakravarty, T.: Cyclic Redundancy Code (CRC) polynomial selection for embedded networks. In: The International Conference on Dependable Systems and Networks, DSN 2004 (2004)Google Scholar
  5. 5.
    Baicheva, T., Dodunekov, S., Kazokov, P.: Undetected error probability performance of cyclic redundancy-check codes of 16-bit reducndancy. IEEE Proc. Comms. 147(5) (2000) 253–256Google Scholar
  6. 6.
    Castagnoli, G., Brauer, S., Herrmann, M.: Optimization of cyclic redundancy-check codes with 24 and 32 parity bits. IEEE Transactions on Communications 41(6), 883–892 (1993)CrossRefzbMATHGoogle Scholar
  7. 7.
    Baicheva, T., Dodunekov, S., Kazakov, P.: Undetected error probability performance of cyclic redundancy-check codes of 16-bit redundancy. IEE Proc. Commun. 147(5) (2000)Google Scholar
  8. 8.
    Baicheva, T.S.: Determination of the Best CRC Codes with up to 10-Bit Redundancy. IEEE Transactions on Communications 56(8), 1214–1220 (2008)CrossRefGoogle Scholar
  9. 9.
    Koopman, P.: 32-bit cyclic redundancy codes for internet applications. In: Intl. Conf. Dependable Systems and Networks (DSN), pp. 459–468 (2002)Google Scholar
  10. 10.
    Prévost, R., et al.: Cyclic redundancy check-based detection algorithms for automatic identification system signals received by satellite. Int. J. Satell. Commun. Network 31, 157–176 (2013)CrossRefGoogle Scholar
  11. 11.
    Beygi, L., et al.: Rate-Adaptive Coded Modulation for Fiber-Optic Communications. Journal of Lightwave Technology 32, 2 (2014)CrossRefGoogle Scholar
  12. 12.
    Peterson72, Peterson, W., Weldon, E.: Error-Correcting Codes, 2nd edn. MIT Press (1972)Google Scholar
  13. 13.
    Ulf Nordqvist, Thesis:Protocol Processing in Network Terminals, Department of Electrical Engineering, Linkopings Universitet, SE-581 83 Linkoping, Sweden (2004)Google Scholar
  14. 14.
    Lu, W., Wong, S.: A Fast CRC Update Implementation, Computer Engineering Laboratory, Electrical Engineering Department. Delft University of Technology, Delft, NetherlandsGoogle Scholar
  15. 15.
    Gad, V.R., Gad, R.S., Naik, G.M.: Gigabit Ethernet Implementation of CRC-32 in noisy channels. International Journal of VLSI Design, Serial Publications 1, 22–32 (2011)Google Scholar
  16. 16.
    Nordqvist, U., Henriksson, T., Liu, D.: CRC generation for protocol processing. In: Norchip Turku, Finland, pp. 288–293(2000)Google Scholar
  17. 17.
    Shieh, M.-D., Sheu, M.-H., Chen, C.-H., Lo, H.-F.: A Systematic Approach for Parallel CRC Computations. Journal of Information Science And Engineering 17, 445–461 (2001)Google Scholar
  18. 18.
    Campobello, G., Patane, G., Russo, M.: Parallel CRC Realization. IEEE Transactions on Computers 52, 10 (2003)CrossRefGoogle Scholar
  19. 19.
    The iSCSI CRC32C Digest and the Simultaneous Multiply and Divide Algorithm Luben Tuikovplentec Ltd. Richmond Hill, Ontario, Canada Vicente Cavannay Agilent Technologies Roseville, California, USA (January 30, 2002)Google Scholar
  20. 20.
    Kounavis, M.E., Berry, F.L.: Novel Table Lookup-Based Algorithms for High-Performance CRC Generation. IEEE Transactions on Computers 57(11), 1550–1560 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Nguyen, G.D.: Fast CRCs. IEEE Transactions on Computers 58(10), 1321–1331 (2009)CrossRefGoogle Scholar
  22. 22.
    Ulf Nordqvist, Thesis: Protocol Processing in Network Terminals by, Department of Electrical Engineering, Linkopings universitet, SE-581 83 Linkoping, Sweden (2004)Google Scholar
  23. 23.
    Campobello, G., Patane, G., Russo, M.: Parallel CRC Realization. IEEE Transactions on Computers 52(10) (2003)Google Scholar
  24. 24.
    Albertango, G., Sisto, R.: Parallel CRC Generation. IEEE Micro 10(5), 63–71 (1990)CrossRefGoogle Scholar
  25. 25.
    Shieh, M.-D., Sheu, M.-H., Chen, C.-H., Lo, H.-F.: A Systematic Approach for Parallel CRC Computations. Journal of Information Science And Engineering 17, 445–461 (2001)Google Scholar
  26. 26.
    Pei, T.-B., Zukowski, C.: High-speed parallel CRC circuits in VLSI. IEEE Transactions on Communications 40, 653–657 (1992)CrossRefzbMATHGoogle Scholar
  27. 27.
    Ji, H.M., Killian, E.: Fast parallel CRC algorithm and implementation on a configurable processor. In: IEEE International Conference on Communications, ICC 2002, vol. 3, pp. 1813–1817 (2002)Google Scholar
  28. 28.
    Grymel, M., Furber, S.B.: A Novel Programmable Parallel CRC Circuit. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 19(10), 1898–1902 (2011)CrossRefGoogle Scholar
  29. 29.
    Toal, C., McLaughlin, K., Sezer, S., Yang, X.: Design and Implementation of a Field Programmable CRC Circuit Architecture. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 17(8), 1142–1147 (2009)CrossRefGoogle Scholar
  30. 30.
    Gad, V.R., Gad, R.S., Naik, G.M.: Implementation of Gigabit Ethernet Standard Using FPGA. International Journal of Mobile Network Communications & Telematics (IJMNCT) 2(4) (2012)Google Scholar
  31. 31.
    Jung-Fu, C., Koorapaty, H.: Error Detection Reliability of LTE CRC Coding, Ericsson Research, RTP, NC, USAGoogle Scholar
  32. 32.
    McDaniel, B.: An algorithm for error correcting cyclic redundance checks. C/C++ Users Journal (2003)Google Scholar
  33. 33.
    Shi-Yi, C., Yu-Bai, L.: Error correcting cyclic redundancy checks based on confidence declaration. Proc. ITS Telecommunications 6, 511–514 (2006)Google Scholar
  34. 34.
    Zhang, Y., Yuan, Q.: A multiple bits error correction method based on cyclic redundancy check codes. ICSP Signal Processing 9, 1808–1810 (2008)Google Scholar
  35. 35.
    Wang, R., Zhao, W., Giannakis, G.B.: CRC-assisted error correction in a convolutionally coded system. IEEE Trans. Comm. 56(11), 1807–1815 (2008)CrossRefGoogle Scholar
  36. 36.
    Prévost, R., Coulon, M., Bonacci, D., LeMaitre, J., Jean-Pierre, M., Jean-Yves, T.: Cyclic redundancy check-based detection algorithms for automatic identification system signals received by satellite. International Journal of Satellite Communications and Networking 31,157–176 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Vinaya R. Gad
    • 1
  • Rajendra S. Gad
    • 1
    Email author
  • Gourish M. Naik
    • 1
  1. 1.Altera System on Chip Laboratory, Department of ElectronicsGoa UniversityTaleigãoIndia

Personalised recommendations