Advertisement

Optimization of the UAV-P’s Motion Trajectory in Public Flying Ubiquitous Sensor Networks (FUSN-P)

  • Ruslan KirichekEmail author
  • Alexander Paramonov
  • Karine Vareldzhyan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9247)

Abstract

In this article we propose a method of interaction with terrestrial USN using public unmanned aerial vehicles (UAV-P). This method optimizes the UAV-P’s motion trajectory in order to minimize the information delivery time to the user. In this article we also present the comparative evaluation of different selection algorithms of UAV-P’s motion trajectory. The purpose of the UAV-P’s motion is to collect information from terrestrial ubiquitous sensor network.

Keywords

Ubiquitous Sensor Networks (USN) The Public Unmanned Aerial Vehicles (UAV-P) Delay-Tolerant Networks (DTN) Clustering Traveling salesman problem The penalty algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akyildiz, I.F., Vuran, M.C., Akan, O.B., Su, W.: Wireless Sensor Networks: A Survey revisited. Computer Networks Journal (2005)Google Scholar
  2. 2.
    Dargie, W.W., Poellabauer, C.: Fundamentals of Wireless Sensor Networks: Theory and Practice. John Wiley & Sons Ltd. (2010)Google Scholar
  3. 3.
    Recommendation Y.2060: Overview of Internet of Things. ITU-T, Geneva, June 2012Google Scholar
  4. 4.
    Stojmenovic, I.: Handbook of sensor networks. Algorithms and architectures. John Wiley & Sons (2005)Google Scholar
  5. 5.
    Kim, D.S., Chung, Y.J.: Self-organization routing protocol supporting mobile nodes for wireless sensor network. In: Proceedings First International MultiSymposium on Computer and Computational Sciences, Hangzhou, China, June 2006Google Scholar
  6. 6.
    Li, Y., Thai, M.T., Wu, W.: Wireless Sensor Networks and Applications. Springer (2008)Google Scholar
  7. 7.
    El Emery, I.M.M., Ramakrishnan, S.: Wireless Sensor Networks: From Theory to Applications. CRC Press, Taylor & Francis Group (2013)Google Scholar
  8. 8.
    Koucheryavy, A., Vladyko, A., Kirichek, R.: Flying Sensor Networks. Electrosvyaz, no. 9 (2014) (in Russian)Google Scholar
  9. 9.
    Koucheryavy, A., Salim, A.: Cluster head selection for homogeneous wireless sensor networks. In: Proceedings, International Conference on Advanced Communication Technology, ICACT 2009, Phoenix Park, KoreaGoogle Scholar
  10. 10.
    Koucheryavy, A., Salim, A.: Prediction-based clustering algorithm for mobile wireless sensor networks. In: Proceedings, International Conference on Advanced Communication Technology, ICACT 2010, Phoenix Park, KoreaGoogle Scholar
  11. 11.
    Akyildiz, I.F., Akan, O.B., Chen, C., Fang, J., Su, W.: InterPlaNetary Internet: state-of-the-art and research challenges. Computer Networks 43 (2003)Google Scholar
  12. 12.
    Paramonov, A.: Investigation of the Traffic Models for Public Networks. D.Sc. Thesis. SPbSUT, St.Petersburg (2014) (in Russian)Google Scholar
  13. 13.
    Mandel, I.D.: Cluster analysis. Finance and Statistics, Moscow (1988) (in Russian)Google Scholar
  14. 14.
    Enyukov, I.S. (ed.) Factor, discriminant and cluster analysis, Moscow (1989). Translation of: Kim, J.-O., Mueller, C.U., Klecka C. (in Russian)Google Scholar
  15. 15.
    Christofides, N.: Graph Theory. An Algorithmic Approach. Hardcover (1975)Google Scholar
  16. 16.
    Berge, C.: The Theory of Graphs and its Applications. Wiley (1962)Google Scholar
  17. 17.
    Ore, O.: Theory of Graphs. American Mathematical Society, Colloquium Publications, vol. 38 (1967)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ruslan Kirichek
    • 1
    Email author
  • Alexander Paramonov
    • 1
  • Karine Vareldzhyan
    • 1
  1. 1.The Bonch-Bruevich Saint-Petersburg State University of TelecommunicationsSaint PetersburgRussia

Personalised recommendations