Chunked-Swarm: Divide and Conquer for Real-Time Bounds in Video Streaming

  • Christopher Probst
  • Andreas Disterhöft
  • Kalman GraffiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9247)


Live user-generated video streaming platforms like generate a large portion of the Internet traffic. Millions of viewers daily watch user channels, although roughly 85 % of all channels have less than 200 views during one session. Due to latency, provides one or more servers for each of’s supported countries. An alternative approach could enable peer-to-peer communication in order to utilize the capacities of the user devices. Solutions up to now, mainly offer only best effort delay guarantees on the distribution speed from initial seeders to all peers. In this paper, we present Chunked-Swarm, a swarm-based approach, which aims to offer predictable streaming delays, independently of the number of peers. Evaluation shows the various impact of the number of peers, number of video parts and chunks on the streaming delay. Being able to hold specific deadlines for up to 200 peers, predestines our solution to be suitable for the majority of’s channels.


Real-time streaming P2p swarm Qos 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banerjee, S., Bhattacharjee, B., Kommareddy, C.: Scalable application layer multicast. In: ACM SIGCOMM 2002 (2002)Google Scholar
  2. 2.
    Cardall, S., Krupat, E., Ulrich, M.: Live Lecture versus Video-recorded Lecture: Are Students Voting with Their Feet? Academic Medicine 83(12) (2008)Google Scholar
  3. 3.
    Castro, M., Druschel, P., Kermarrec, A., Nandi, A., Rowstron, A., Singh, A.: SplitStream: high-bandwidth multicast in cooperative environments. In: ACM SOSP 2003Google Scholar
  4. 4.
    Chan, T.K., Chan, S.G., Begen, A.C.: SPANC: Optimizing Scheduling Delay for Peer-to-Peer Live Streaming. IEEE Transactions on Multimedia 12(7) (2010)Google Scholar
  5. 5.
    Graffi, K.: PeerfactSim.KOM: A P2P system simulator - experiences and lessons learned. In: IEEE P2P 2011 (2011)Google Scholar
  6. 6.
    Graffi, K., Kaune, S., Pussep, K., Kovacevic, A., Steinmetz, R.: Load balancing for multimedia streaming in heterogeneous peer-to-peer systems. In: ACM NOSSDAV 2008 (2008)Google Scholar
  7. 7.
    Kovacevic, A., Graffi, K., Kaune, S., Leng, C., Steinmetz, R.: Towards benchmarking of structured peer-to-peer overlays for network virtual environments. In: IEEE ICPADS 2008 (2008)Google Scholar
  8. 8.
    Kovacevic, A., Kaune, S., Heckel, H., Mink, A., Graffi, K., Heckmann, O., Steinmetz, R.: PeerfactSim.KOM - A Simulator for Large-Scale Peer-to-Peer Networks. Technical Report Tr-2006-06, TU Darmstadt (2006)Google Scholar
  9. 9.
    Liebau, N., Pussep, K., Graffi, K., Kaune, S., Jahn, E., Beyer, A., Steinmetz, R.: The impact of the P2P paradigm on the new media industries. In: AMCIS (2007)Google Scholar
  10. 10.
    Liu, Z., Shen, Y., Ross, K., Panwar, S., Wang, Y.: Substream trading: towards an open P2P live streaming system. In: IEEE ICNP 2008 (2008)Google Scholar
  11. 11.
    Liu, Z., Shen, Y., Ross, K., Panwar, S., Wang, Y.: LayerP2P: using layered video chunks in P2P live streaming. IEEE Trans. on Multimedia 11(7) (2009)Google Scholar
  12. 12.
    Nascimento, G., Ribeiro, M., Cerf, L., Cesario, N., Kaytoue, M., Raissi, C., Vasconcelos, T., Meira, W.: Modeling and analyzing the video game live-streaming community. In: LA-WEB 2014 (2014)Google Scholar
  13. 13.
    Padmanabhan, V., Wang, H., Chou, P., Sripanidkulchai, K.: Distributing streaming media content using cooperative networking. In: ACM NOSSDAV 2012 (2002)Google Scholar
  14. 14.
    Pai, V., Kumar, K., Tamilmani, K., Sambamurthy, V., Mohr, A.E.: Chainsaw: eliminating trees from overlay multicast. In: van Renesse, R. (ed.) IPTPS 2005. LNCS, vol. 3640, pp. 127–140. Springer, Heidelberg (2005) Google Scholar
  15. 15.
    Pendarakis, D., Shi, S., Verma, D., Waldvogel, M.: ALMI: an application level multicast infrastructure. In: USENIX USITS 2001 (2001)Google Scholar
  16. 16.
    Rückert, J., Knierim, T., Hausheer, D.: Clubbing with the peers: a measurement study of BitTorrent live. In: IEEE P2P 2014 (2014)Google Scholar
  17. 17.
    Tian, R., Xiong, Y., Zhang, Q., Li, B., Zhao, B.Y., Li, X.: Hybrid overlay structure based on random walks. In: van Renesse, R. (ed.) IPTPS 2005. LNCS, vol. 3640, pp. 152–162. Springer, Heidelberg (2005) Google Scholar
  18. 18.
    Wang, F., Xiong, Y., Liu, J.: mTreebone: A Collaborative Tree-Mesh Overlay Network for Multicast Video Streaming. IEEE Transactions on Parallel and Distributed Systems 21(3) (2010)Google Scholar
  19. 19.
    Xie, S., Li, B., Keung, G.Y., Zhang, X.: Coolstreaming: Design, Theory, and Practice. IEEE Trans. on Multimedia 9(8) (2007)Google Scholar
  20. 20.
    Zhang, C., Liu, J.: On Crowdsourced Interactive Live Streaming: A Twitch. TV-Based Measurement Study (2015). arXiv preprint arXiv:1502.04666
  21. 21.
    Zhang, X., Hassanein, H.S.: TreeClimber: a network-driven push-pull hybrid scheme for peer-to-peer video live streaming. In: IEEE LCN 2010 (2010)Google Scholar
  22. 22.
    Zhang, X., Hassanein, H.S.: A Survey of Peer-to-Peer Live Video Streaming Schemes - An Algorithmic Perspective. Comp. Networks 56(15) (2012)Google Scholar
  23. 23.
    Zhuang, S., Zhao, B.Y., Joseph, A.D., Katz, R.H., Kubiatowicz, J.: Bayeux: an architecture for scalable and fault-tolerant wide-area data dissemination. In: ACM NOSSDAV 2001 (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Christopher Probst
    • 1
  • Andreas Disterhöft
    • 1
  • Kalman Graffi
    • 1
    Email author
  1. 1.Technology of Social NetworksUniversity of DüsseldorfDüsseldorfGermany

Personalised recommendations