Advertisement

Method of Defining Multimodal Information Falsity for Smart Telecommunication Systems

  • Oleg Basov
  • Andrey RonzhinEmail author
  • Victor Budkov
  • Igor Saitov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9247)

Abstract

In the article, a review of the existing methods of transmitted information falsity diagnostics is presented. A conclusion concerning the purposefulness of this function realization in polymodal infocommunication systems has been drawn. A method of defining the multimodal information falsity transmitted in the course of communication act with the help of these systems has been suggested. Common tendencies concerning the dynamics of subscribers’ non-verbal behavior parameters have been formulated. Based on the factor and multiple regressive analysis, the factors depending on such dynamics have been distinguished. Based on the carried out research, a conclusion concerning the possibility of realization of transmitted information falsity in the course of interpersonal communication between subscribers has been drawn and a decisive rule has been formulated.

Keywords

Polymodal infocommunication system Falsity Non-verbal behavior Factor analysis Factor structure matrix Multiple regression coefficients 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Basov, O.O., Saitov, I.A.: Basic Channels of Interpersonal Communication and their Projection onto Infocommunicational Systems. SPIIRAS Proceedings 30, 122–140 (2013). (In Russ.)Google Scholar
  2. 2.
    Vrij, A.: Detecting Lies and Deceit: The Psychology of Lying and the Implications for Professional Practice. Wiley (2000). ISBN: 9780471853169Google Scholar
  3. 3.
    Gruzyeva, I.V.: Formal-dynamic and Stylistic Peculiarities of Individuality as Factors of Instrumental Detection of the Concealed Information. Author’s Abstract. Cand. Sc. {Psychology} (2006) (in russ.)Google Scholar
  4. 4.
    Usanov, D.A., Romanova, N.M., Skripal, A.V., Rytik, A.P.,Vagarin, A.J., Samokhina, M.A.: Method of estimation of psychophysical condition of person. Patent RU 2337607, Ap-plication 2007111403/14, 28.03.2007, Bull. 31 (2008)Google Scholar
  5. 5.
    Morozov, V.P., Morozov, P.V.: Method for estimating sincerity-insincerity of speaking person. Patent RU 2293518, Application 2005124844/14, 04.08.2005, Bull. 5 (2007)Google Scholar
  6. 6.
    Nierenberg, G.I., Calero, H.H.: How to Read a Person Like a Book. Pocket Books (1990). ISBN: 0671735578Google Scholar
  7. 7.
    Pease, A., Pease, B.: The Definitive Book of Body Language. Bantam (2006). ISBN: 9780553804720Google Scholar
  8. 8.
    Vrij, A.: Detecting lies and deceit: pitfalls and opportunities. Wiley (2008). ISBN: 9780470516249Google Scholar
  9. 9.
    Ekman, P.: Emotions Revealed: Recognizing Faces and Feelings to Improve Communication and Emotional Life. Henry Holt and Co. (2004). ISBN: 080507516XGoogle Scholar
  10. 10.
    Butovskaya, M.L.: Body Language: Nature and Culture (Evolutionary and Cross-Cultural Bases of the Human Nonverbal Communication). Scientific World (2004) (in russ.)Google Scholar
  11. 11.
    Ronzhin, A., Budkov, V.: Speaker turn detection based on multimodal situation analysis. In: Železný, M., Habernal, I., Ronzhin, A. (eds.) SPECOM 2013. LNCS, vol. 8113, pp. 302–309. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Ackerl, К., Atzmuller, M., Grammer, К.: The Scent of Fear. Neuroendocrinology Letters 23, 79–84 (2002)Google Scholar
  13. 13.
    Meshcheryakov, R., Bondarenko, V.: Dialogue as a basis for construction of speech systems. Cybernetics and Systems Analysis 44(2), 175–184 (2008)zbMATHCrossRefGoogle Scholar
  14. 14.
    Basov, O., Basova, A., Nosov, M.: Human resources management in conditions of operators’ psychophysiological state changes. In: Ronzhin, A., Potapova, R., Delic, V. (eds.) SPECOM 2014. LNCS, vol. 8773, pp. 259–267. Springer, Heidelberg (2014)Google Scholar
  15. 15.
    Bouguet, J.-Y.: Pyramidal Implementation of the Lucas-Kanade Feature Tracker Description of the algorithm. Intel Corporation Microprocessor Research Labs (2000)Google Scholar
  16. 16.
    Castrillyn, M., Deniz, O., Hernandez, D., Lorenzo, J.: A Comparison of Face and Facial Feature Detectors based on the Viola-Jones General Object Detection Framework. Machine Vision and Applications 22(3), 481–494 (2011)Google Scholar
  17. 17.
    Bradsky, G., Kaehler A.: Learning OpenCV. O’Reilly Publisher (2008)Google Scholar
  18. 18.
    Field, A.: Discovering Statistics using IBM SPSS Statistics. SAGE Publications Ltd. (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Oleg Basov
    • 1
  • Andrey Ronzhin
    • 2
    • 3
    Email author
  • Victor Budkov
    • 2
  • Igor Saitov
    • 1
  1. 1.Academy of FAP of RussiaOrelRussia
  2. 2.SPIIRASSt. PetersburgRussia
  3. 3.SUAISt. PetersburgRussia

Personalised recommendations