Ontology-Based Voice Annotation of Data Streams in Vehicles

  • Inna SosunovaEmail author
  • Arkady Zaslavsky
  • Theodoros Anagnostopoulos
  • Alexey Medvedev
  • Sergey Khoruzhnikov
  • Vladimir Grudinin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9247)


With proliferation of the Internet of Things, annotation and generation of metadata describing data streams produced by sensors becomes even more urgent and important. This article proposes a method of annotating data streams with voice and extracting semantics from data. The strengths and weaknesses of existing voice recognition systems are discussed and it is argued that ontologies should play important role in making annotations meaningful and useful for various services and applications, including annotating road conditions and traffic situations. The architecture and implementation of the proposed system is discussed and demonstrated.


Internet of things Iot Ontology Speech recognition Speech technology in vehicles Intelligent transportation systems ITS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hu, M., Li, C.: Design smart city based on 3s, internet of things, grid computing and cloud computing technology. In: Wang, Y., Zhang, X. (eds.) IOT 2012. CCIS, vol. 312, pp. 466–472. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Medvedev, A., Zaslavsky, A., Khoruzhnikov, S., Grudinin, V.: Reporting road problems in smart cities using openiot framework. In: Podnar Žarko, I., Pripužić, K., Serrano, M. (eds.) FP7 OpenIoT Project Workshop 2014. LNCS, vol. 9001, pp. 169–182. Springer, Heidelberg (2015)Google Scholar
  3. 3.
    Medvedev, A., Zaslavsky, A., Grudinin, V., Khoruzhnikov, S.: Citywatcher: annotating and searching video data streams for smart cities applications. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2014. LNCS, vol. 8638, pp. 144–155. Springer, Heidelberg (2014)Google Scholar
  4. 4.
    Lopez, T., Ranasinghe, D.C., Harrison, M., Mcfarlane, D.: Adding sense to the Internet of Things. Personal and Ubiquitous Computing 16(3), 291–308 (2012). Springer-VerlagCrossRefGoogle Scholar
  5. 5.
    Jara, A.J., Lopez, P., Fernandez, D., Castillo, J.F., Zamora, M.A.: Mobile digcovery: discovering and interacting with the world through the A. F. Internet of Things. Personal and Ubiquitous Computing 18(2), 323–338 (2014). Springer-VerlagCrossRefGoogle Scholar
  6. 6.
    Rusdorogi, April 20, 2015.
  7. 7.
    Goodroads, April 20, 2015.
  8. 8.
  9. 9.
    OWL Web Ontology Language Overview, April 20, 2015.
  10. 10.
    Yu, L.: Introduction to the Semantic Web and Semantic Web Services. Chapman and Hall/CRC (2007)Google Scholar
  11. 11.
    NigelShadbolt, E.M., Stutt, A., Gibbins, N., Kopsa, J., Mikovec, Z., Slavík, P., Ontology driven voice-based interaction in mobile environment. In: Davies, N., Kirste, T., Schumann, H. (eds.) Mobile Computing and Ambient Intelligence, IBFI, Schloss Dagstuhl, Germany (2005)Google Scholar
  12. 12.
    Hamerich, S.W.: Towards advanced speech driven navigation systems for cars. In: 3rd IET Int. Conf. on Intelligent Environments, IE 2007, Ulm, Germany, pp. 24–25 (2007)Google Scholar
  13. 13.
    Chen, F., Jonsson, I.-M., Villing, J., Larsson, S.: Application of Speech Technology in Vehicles. Speech Technology, pp. 195–219 (2010)Google Scholar
  14. 14.
    Cameron, H.: Speech at the Interface. In: Workshop on Voice Operated Telecom Services, Ghent, Belgium, pp. 1–7 (2000)Google Scholar
  15. 15.
    Barón, A., Green, P.: Safety and Usability of Speech Interfaces for In-Vehicle Tasks while Driving: A Brief Literature Review. Transportation Research Institute (UMTRI) (2006)Google Scholar
  16. 16.
    Chen F., Jonsson, I.-M., Villing, J., Larsson, S., Application of Speech Technology in Vehicles, Speech Technology. Springer US (2010)Google Scholar
  17. 17.
    Huang, X., Acero, A., Hon, H.-W.: Spoken Language Processing. Guide to Algorithms and System Development (2001)Google Scholar
  18. 18.
    Google Speech API Demonstration, April 20, 2015.
  19. 19.
    Google Speech To Text API, April 20, 2015.
  20. 20.
    Yandex Speech Kit for Android, April 20, 2015.
  21. 21.
    Yandex Speech Kit, April 20, 2015.
  22. 22.
    CMU Sphinx, April 20, 2015.
  23. 23.
  24. 24.
  25. 25.
  26. 26.
    Walker, W., Lamere, P., Kwok, P., Raj, B., Singh, R., Gouvea, E., Wolf, P., Woelfel, J.: Sphinx-4: A flexible open source framework for speech recognition (2004).
  27. 27.
    Mykowiecka, A., Waszczuk, J.: semantic annotation of City transportation information dialogues using CRF method. In: Matoušek, V., Mautner, P. (eds.) TSD 2009. LNCS, vol. 5729, pp. 411–418. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context Aware Computing for The Internet of Things: A Survey. IEEE Communications Surveys & Tutorials 16(1), 414–454 (2014)CrossRefGoogle Scholar
  29. 29.
    Buch, N., Kristl, V.S.A., Orwell, J.: A Review of Computer Vision Techniques for the Analysis of Urban Traffic. IEEE Transactions on Intelligent Transportation Systems 12(3)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Inna Sosunova
    • 1
    Email author
  • Arkady Zaslavsky
    • 1
    • 2
  • Theodoros Anagnostopoulos
    • 1
    • 3
  • Alexey Medvedev
    • 1
  • Sergey Khoruzhnikov
    • 1
  • Vladimir Grudinin
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.Digital Productivity Flagship, CSIROClayton SouthAustralia
  3. 3.Community Imaging GroupUniversity of OuluOuluFinland

Personalised recommendations