Skip to main content

Dark Matter Searches in Dwarf Spheroidal Galaxy Segue 1 with MAGIC

  • Chapter
  • First Online:
Optimized Dark Matter Searches in Deep Observations of Segue 1 with MAGIC

Part of the book series: Springer Theses ((Springer Theses))

  • 331 Accesses

Abstract

This chapter presents the results of this work—the search for signals of dark matter in dSph galaxy Segue 1. The long-term observational campaign was carried out with the MAGIC Telescopes between January 2011 and February 2013. With 157.9 h of good-quality data, this is the deepest survey of any dwarf galaxy by any IACT so far. Here are described the motivation behind the choice of Segue 1 as a suitable dark matter target, details of its observations with MAGIC and the subsequent analysis. Lastly, results from the full likelihood method and their interpretation in the light of various dark matter models are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Thus the name Segue 1, after the survey SEGUE (Sloan Extension for Galaxy Understanding and Exploration, [31]), as conventional for globular clusters, instead after the constellation towards which it lies.

  2. 2.

    The dynamical sum cleaning is not the best solution for the Segue 1 sample C data, as it produces non-smooth response functions. However, by the time this work was finished, production of MC files with different cleanings was not yet possible.

  3. 3.

    Above 2 TeV, these limits are somewhat deteriorated, as the dynamical sum image cleaning is no longer optimal for this analysis.

  4. 4.

    In principle, the intermediate scalar can also decay into photon and gauge boson, or two bosons.

References

  1. L.E. Strigari, Galactic searches for dark matter (2012), arXiv:1211.7090

  2. V. Springel et al., The Aquarius project: the subhaloes of galactic haloes. Mon. Not. Roy. Astron. Soc. 391, 1685–1711 (2008). arXiv:0809.0898

    Article  ADS  Google Scholar 

  3. B. Moore et al., Cold collapse and the core catastrophe. Mon. Not. Roy. Astron. Soc. 310, 1147–1151 (1999). arXiv:astro-ph/9903164

    Article  ADS  Google Scholar 

  4. G. Gilmore et al., The observed properties of dark matter on small spatial scales. Astrophys. J. 663, 948–959 (2007). arXiv:astro-ph/0703308

    Article  ADS  Google Scholar 

  5. H. Shapley, A stellar system of a newtype. Harvard Coll. Obs. Bull. 908, 1–11 (1938)

    ADS  Google Scholar 

  6. J. Diemand, M. Kuhlen, P. Madau, Dark matter substructure and gamma-ray annihilation in the Milky Way Halo. Astrophys. J. 657, 262–270 (2007). arXiv:astro-ph/0611370

    Google Scholar 

  7. The Sloan Digital Sky Survey Collaboration, Sloan Digital Sky Survey home page (2013), http://www.sdss.org

  8. M.G. Walker, M. Mateo, E.W. Olszewski, Stellar velocities in the Carina, Fornax, Sculptor, and Sextans dSph galaxies: data from the Magellan/MMFS Survey. Astron. J. 137, 3100–3108 (2009). arXiv:0811.0118

    Google Scholar 

  9. L. Strigari et al., Redefining the missing satellites problem. Astrophys. J. 669, 676–683 (2007). arXiv:0704.1817

    Article  ADS  Google Scholar 

  10. L. Strigari et al., A common mass scale for satellite galaxies of the Milky Way. Nature 454, 1096–1097 (2008). arXiv:0808.3772

    Article  ADS  Google Scholar 

  11. J. Klimentowski et al., Mass modelling of dwarf spheroidal galaxies: the effect of unbound stars from tidal tails and the Milky Way. Mon. Not. Roy. Astron. Soc. 378, 353–368 (2007). arXiv:astro-ph/0611296

    Google Scholar 

  12. J.D. Simon, M. Geha, The kinematics of the ultra-faint Milky Way satellites: solving the missing satellite problem. Astrophys. J. 670, 313–331 (2007). arXiv:0706.0516

    Article  ADS  Google Scholar 

  13. B.J. Pritzl, K.A. Venn, M. Irwin, A comparison of elemental abundance ratios in globular clusters, field stars, and dwarf spheroidal galaxies. Astrophys. J. 130, 2140–2165 (2005). arXiv:astro-ph/0506238

    ADS  Google Scholar 

  14. D. Harbeck et al., Population gradients in Local Group dwarf spheroidals. Astron. J. 122, 3092–3105 (2001). arXiv:astro-ph/0109121

  15. M. Mateo et al., The Carina dwarf spheroidal galaxy—how dark is it? Astron. J. 105, 510–526 (1993)

    Article  ADS  Google Scholar 

  16. J. Simon et al., A complete spectroscopic survey of the Milky Way satellite Segue 1: the darkest galaxy. Astrophys. J. 733, 46–66 (2011). arXiv:1007.4198

    Google Scholar 

  17. C.J. Hogan, J.J. Dalcanton, New dark matter physics: clues from halo structure. Phys. Rev. D 63, 063511 (2000). arXiv:astro-ph/0002330

    Article  ADS  Google Scholar 

  18. M. Mateo, Dwarf galaxies of the Local Group. Ann. Rev. A&A 36, 435–506 (1998). arXiv:astro-ph/9810070

  19. N. Evans, F. Ferrer, S. Sarkar, A Baedecker for the dark matter annihilation signal. Phys. Rev. D 69, 123501 (2004). arXiv:astro-ph/0311145

    Article  ADS  Google Scholar 

  20. J. Jardel, K. Gebhardt, The dark matter density profile of the Fornax dwarf. Astrophys. J. 746, 89–97 (2012). arXiv:1112.0319

    Google Scholar 

  21. L.E. Strigari et al., Precise constraints on the dark matter content of Milky Way dwarf galaxies for gamma-ray experiments. Phys. Rev. D 75, 083526 (2007). arXiv:astro-ph/0611925

    Article  ADS  Google Scholar 

  22. M. Ackermann et al., Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope. Phys. Rev. Lett. 107, 241302 (2011). arXiv:1108.3546

  23. J. Albert et al., Upper limit for gamma-ray emission above 140 GeV from the dwarf spheroidal galaxy Draco. Astrophys. J. 679, 428–431 (2008). arXiv:0711.2574

    Article  ADS  Google Scholar 

  24. E. Aliu et al., MAGIC upper limits on the VHE gamma-ray emission from the satellite galaxy Willman 1. Astrophys. J. 697, 1299–1304 (2009). arXiv:0810.3561

    Article  ADS  Google Scholar 

  25. J. Aleksić et al., Searches for dark matter annihilation signatures in the Segue 1 satellite galaxy with the MAGIC-I telescope. JCAP 06, 035 (2011), arXiv:1103.0477

  26. V.A. Acciari et al., VERITAS search for VHE gamma-ray emission from dwarf spheroidal galaxies. Astrophys. J. 720, 1174–1180 (2010). arXiv:1006.5955

    Article  ADS  Google Scholar 

  27. E. Aliu et al., VERITAS deep observations of the dwarf spheroidal galaxy Segue 1. Phys. Rev. D 85, 062001 (2012). arXiv:1202.2144

    Article  ADS  Google Scholar 

  28. F. Aharonian et al., A search for a dark matter annihilation signal towards the Canis Major overdensity with H.E.S.S., Astrophys. J. 691, 175–181 (2009), arXiv:0809.3894

  29. F. Aharonian, Observations of the Sagittarius dwarf galaxy by the H.E.S.S. experiment and search for a dark matter signal, Astropart. Phys. 29, 55–62 (2008), Erratum-ibid.33: 274–275 (2010), arXiv:0711.2369

  30. A. Abramowski, H.E.S.S. constraints on dark matter annihilations towards the Sculptor and Carina dwarf galaxies. Astropart. Phys. 34, 608–616 (2011). arXiv:1012.5602

    Article  ADS  Google Scholar 

  31. The Sloan Digital Sky Survey Collaboration, SEGUE: Sloan Extension for Galactic Understanding and Exploration, http://www.sdss.org/segue/aboutsegue (2013)

  32. V. Belokurov et al., Cats and dogs, hair and a hero: a quintet of new Milky Way companions. Astrophys. J. 654, 897–906 (2007). arXiv:astro-ph/0608448

    Article  ADS  Google Scholar 

  33. Keck Observatory, DEIMOS home page, (2013), http://www2.keck.hawaii.edu/inst/deimos

  34. M. Geha et al., The least luminous galaxy: spectroscopy of the Milky Way satellite Segue 1. Astrophys. J. 692, 1464–1475 (2009). arXiv:0809.2781

    Article  ADS  Google Scholar 

  35. M. Niederste-Ostholt et al., The origin of Segue 1. Mon. Not. Roy. Astron. Soc. 398, 1771–1781 (2009). arXiv:0906.3669

    Article  ADS  Google Scholar 

  36. W. A. Rolke, A. M. López, J. Conrad, Limits and confidence intervals in the presence of nuisance parameters. Nucl. Instrum. Meth. A 551, 493–503 (2005), physics/0403059

    Google Scholar 

  37. J. Aleksić et al., Performance of the MAGIC stereo system obtained with the Crab Nebula data. Astropart. Phys. 35, 435–448 (2012), arXiv:1108.1477

  38. F. James, MINUIT. Function minimization and error analysis, reference manual version 94.1, CERN Program Library Long Writeup D 506, CERN, Geneva, Switzerland (1994)

    Google Scholar 

  39. J. Cembranos et al., Photon spectra from WIMP annihilation. Phys. Rev. D 83, 083507 (2011). arXiv:1009.4936

    Article  ADS  Google Scholar 

  40. T. Bringmann et al., Fermi LAT search for internal bremsstrahlung signatures from dark matter annihilation. JCAP 07, 054 (2012). arXiv:1203.1312

    Google Scholar 

  41. J.F. Navarro et al., The diversity and similarity of simulated cold dark matter haloes. Mon. Not. Roy. Astron. Soc. 402, 21–34 (2010). arXiv:0810.1522

    Article  ADS  Google Scholar 

  42. R. Essig et al., Indirect dark matter detection limits from the ultra-faint Milky Way satellite Segue 1. Phys. Rev. D 82, 123503 (2010). arXiv:1007.4199

    Article  ADS  Google Scholar 

  43. The ROOT Team, T Minuit, (2013), http://root.cern.ch/root/html/TMinuit.html

  44. A. Abramowski et al., Search for a dark matter annihilation signal from the Galactic Center Halo with H.E.S.S. Phys. Rev. Lett. 106, 161301 (2011). arXiv:1103.3266

  45. J. Aleksić, J. Rico, M.Martinez, Optimized analysis method for indirect dark matter searches with imaging air Cherenkov telescopes, JCAP 10, 032 (2012), arXiv:1209.5589

  46. The VERITAS Collaboration, VERITAS Specifications, (2013), http://veritas.sao.arizona.edu/about-veritas-mainmenu-81/veritas-speci_cations-mainmenu-111

  47. A. Ibarra, D. Tran, C. Weniger, Decaying dark matter in light of the PAMELA and Fermi LAT data. JCAP 01, 009 (2010). arXiv:0906.1571

    Google Scholar 

  48. A. Ibarra, D. Tran, Decaying dark matter and the PAMELA anomaly. JCAP 02, 021 (2009). arXiv:0811.1555

    Article  ADS  Google Scholar 

  49. G. Bertone et al., Gamma-rays from decaying dark matter. JCAP 11, 003 (2012). arXiv:0709.2299

    ADS  Google Scholar 

  50. M. Ackermann, Fermi-LAT Results on the intensity and the origin of the extragalactic gamma-ray background. Talk at the TeVPA Conference, Stockholm, Sweden (2011)

    Google Scholar 

  51. M. Cirelli et al., Gamma ray constraints on decaying dark matter. Phys. Rev. D 86, 083506 (2012). arXiv:1205.5283

    Article  ADS  Google Scholar 

  52. A. Abramowski et al., Search for dark matter annihilation signals from the Fornax galaxy cluster with H.E.S.S. Astrophys. J. 750, 123 (2012). arXiv:1202.5494

  53. M. Ackermann et al., Search for gamma-ray spectral lines with the Fermi Large Area Telescope and dark matter implications (2013), arXiv:1305.5597

  54. A. Abramowski et al., Search for photon line-like signatures from dark matter annihilations with H.E.S.S. Phys. Rev. Lett. 110, 041301 (2013). arXiv:1301.1173

    Article  ADS  Google Scholar 

  55. C. Weniger, A tentative gamma-ray line from dark matter annihilation at the Fermi Large Area Telescope. JCAP 08, 007 (2012). arXiv:1204.2797

    Google Scholar 

  56. A. Geringer-Sameth, S.M. Koushiappas, Dark matter line search using a joint analysis of dwarf galaxies with the Fermi Gamma-ray Space Telescope. Phys. Rev. D 86, 021302 (2012). arXiv:1206.0796

  57. X. Huanga et al., Constraints on the dark matter annihilation scenario of Fermi 130 GeV gamma-ray line emission by continuous gamma rays, Milky Way halo, galaxy clusters and dwarf galaxies observations. JCAP 11, 048 (2012). arXiv:1208.0267

    Google Scholar 

  58. M. Ackermann et al., Fermi LAT search for dark matter in gamma-ray lines and the inclusive photon spectrum. Phys. Rev. D 86, 022002 (2012). arXiv:1205.2739

    Article  ADS  Google Scholar 

  59. T. Bringmann, C. Weniger, Gamma ray signals from dark matter: concepts, status and prospects. Dark Universe 1, 194–217 (2012). arXiv:1208.5481

    Google Scholar 

  60. A. Ibarra et al., Gamma-ray boxes from axion-mediated dark matter. JCAP 05, 016 (2013). arXiv:1303.6632

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Aleksić .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aleksić, J. (2016). Dark Matter Searches in Dwarf Spheroidal Galaxy Segue 1 with MAGIC. In: Optimized Dark Matter Searches in Deep Observations of Segue 1 with MAGIC. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-23123-5_5

Download citation

Publish with us

Policies and ethics