Skip to main content

Combination of Air- and Water-Calibration for a Fringe Projection Based Underwater 3D-Scanner

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9257))

Abstract

A new calibration methodology for photogrammetric underwater stereo scanners is presented. By combination with a complete air calibration, the water part of the calibration can be performed with low expenditure. This leads to an easy handling of the whole procedure. In this paper an underwater camera model is described which considers the refraction effects at the interfaces of the different media air, glass, and water, leading to a ray based presentation. In order to facilitate the calibration procedure and to increase robustness, some simplifications concerning the sensor geometry were made. First results obtained with a new fringe projection based underwater 3D scanner are presented which show the effectiveness of the new calibration strategy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Höhle, J.: Zur theorie und praxis der unterwasser-photogrammetrie. In: Deutsche Geodätische Kommission, Reihe C, Dissertationen, Bayerische Akademie der Wissenschaften in Kommission bei der C.H.Beckschen Verlagsbuchhandlung München (1971)

    Google Scholar 

  2. Moore, E.J.: Underwater photogrammetry. Photogrammetric Record 8(48), 748–763 (1976)

    Article  Google Scholar 

  3. Korduan, P., Förster, T., Obst, R.: Unterwasser-Photogrammetrie zur 3D-Rekonstruktion des Schiffswracks “Darsser Kogge”. Photogrammetrie Fernerkundung Geoinformation 5, 373–381 (2003)

    Google Scholar 

  4. Drap, P.: Underwater photogrammetry for archaeology. In: Carneiro Da Silva, D. (Ed.): Special Applications of Photogrammetry, pp. 111–136. InTech publ. (2012). ISBN: 978-953-51-0548-0

    Google Scholar 

  5. Roman, C., Inglis, G., Rutter, J.: Application of structured light imaging for high resolution mapping of underwater archaeological sites. In: OCEANS 2010, pp. 1–9. IEEE, Sydney (2010)

    Google Scholar 

  6. Gracias, N., Santos-Victor, J.: Underwater video mosaics as visual navigation maps. CVIU 79, 66–91 (2000)

    Google Scholar 

  7. Dunbrack, R.L.: In situ measurement of fish body length using perspective-based remote stereo-video. Fisheries Research 82, 327–331 (2006)

    Article  Google Scholar 

  8. Costa, C., Loy, A., Cataudella, S., Davis, D., Scardi, M.: Extracting fish size using dual underwater cameras. Aquacultural Engineering 35, 218–227 (2006)

    Article  Google Scholar 

  9. Bythell, J.C., Pan, P., Lee, J.: Three-dimensional morphometric measurements of reef corals using underwater photogrammetry techniques. Springer Coral Reefs 20, 193–199 (2001)

    Article  Google Scholar 

  10. Sedlazeck, A., Koch, R.: Perspective and non-perspective camera models in underwater imaging – overview and error analysis. In: Dellaert, F., Frahm, J.-M., Pollefeys, M., Leal-Taixé, L., Rosenhahn, B. (eds.) Real-World Scene Analysis 2011. LNCS, vol. 7474, pp. 212–242. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Li, R., Tao, C., Curran, T., Smith, R.: Digital underwater photogrammetric system for large scale underwater spatial information acquisition. Marine Geodesy 20, 163–173 (1996)

    Article  Google Scholar 

  12. Maas, H.G.: New developments in multimedia photogrammetry. In: Grún, A., Kahmen, H. (eds.) Optical 3-D Measurement Techniques III. Wichmann Verlag, Karlsruhe (1995)

    Google Scholar 

  13. Kwon, Y.H., Casebolt, J.B.: Effects of light refraction on the accuracy of camera ca-libration and reconstruction in underwater motion analysis. Sports Biom. 5, 315–340 (2006)

    Article  Google Scholar 

  14. Telem, G., Filin, S.: Photogrammetric modeling of underwater environments. ISPRS Journal of Photogrammetry and Remote Sensing 65(5), 433 (2010)

    Article  Google Scholar 

  15. Fryer, J.G., Fraser, C.S.: On the calibration of underwater cameras. The Photogrammetric Record 12(67), 73–85 (1986)

    Article  Google Scholar 

  16. Lavest, J.-M., Rives, G., Lapresté, J.T.: Underwater camera calibration. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 654–668. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Lavest, J.M., Rives, G., Lapreste, J.T.: Dry camera calibration for underwater applications. Machine Vision and Applications 2003(13), 245–253 (2003)

    Article  Google Scholar 

  18. Bryant, M., Wettergreen, D., Abdallah, S., Zelinsky, A.: Robust camera calibration for an autonomous underwater vehicle. In: Australian Conference on Robotics and Automation, ACRA 2000 (2000)

    Google Scholar 

  19. Bruno, F., Bianco, G., Muzzupappa, M., Barone, S., Razionale, A.V.: Experimentation of structured light and stereo vision for underwater 3D reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing 66, 508–518 (2011)

    Article  Google Scholar 

  20. Bianco, G., Gallo, A., Bruno, F., Muzzupappa, M.: A comparative analysis between active and passive techniques for underwater 3D reconstruction of close-range objects. Sensors 2013(13), 11007–11031 (2013)

    Article  Google Scholar 

  21. Zhang, Q., Wang, Q., Hou, Z., Liu, Y., Su, X.: Three-dimensional shape measurement for an underwater object based on two-dimensional grating pattern projection. Optics & Laser Technology 43, 801–805 (2011)

    Article  Google Scholar 

  22. Massot-Campos, M., Oliver-Codina, G.: Underwater laser-based structured light system for one-shot 3D reconstruction. In: 5th Int Workshop on Marine Technology, Girona (2014)

    Google Scholar 

  23. Luhmann, T., Robson, S., Kyle, S., Harley, I.: Close range photogrammetry. Wiley Whittles Publishing (2006)

    Google Scholar 

  24. Shortis, M.R., Miller, S., Harvey, E.S., Robson, S.: An analysis of the calibration stability and measurement accuracy of an underwater stereo-video system used for shellfish surveys. Geomatics Research Australasia 73, 1–24 (2000)

    Google Scholar 

  25. Schreiber, W., Notni, G.: Theory and arrangements of self-calibrating whole-body three-dimensional measurement systems using fringe projection techniques. Opt. Eng. 39, 159–169 (2000)

    Article  Google Scholar 

  26. Bothe, T., Li, W., Schulte, M., von Kopylow, C., Bergmann, R.B., Jüptner, W.: Vision ray calibration for the quantitative geometric description of general imaging and projection optics in metrology. Applied Optics 49(30), 5851–5860 (2010)

    Article  Google Scholar 

  27. Chen X., Yang, Y.H.: Two view camera housing parameters calibration for multi-layer flat refractive interface. In: CVPR (2014)

    Google Scholar 

  28. VDI/VDE 2634. Optical 3D-measuring systems. VDI/VDE guidelines, Parts 1–3 (2008)

    Google Scholar 

  29. Munkelt, C., Bräuer-Burchardt, C., Kühmstedt, P., Schmidt, I., Notni, G.: Cordless hand-held optical 3D sensor. In: Proc. SPIE, vol. 6618, pp. 66180D-1-8 (2007)

    Google Scholar 

  30. 4h Jena (2015). http://www.4h-jena.de/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Bräuer-Burchardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bräuer-Burchardt, C., Kühmstedt, P., Notni, G. (2015). Combination of Air- and Water-Calibration for a Fringe Projection Based Underwater 3D-Scanner. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science(), vol 9257. Springer, Cham. https://doi.org/10.1007/978-3-319-23117-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23117-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23116-7

  • Online ISBN: 978-3-319-23117-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics