Skip to main content

Evolving Ensembles: What Can We Learn from Biological Mutualisms?

  • Conference paper
  • First Online:
Information Processing in Cells and Tissues (IPCAT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9303))

Abstract

Ensembles are groups of classifiers which cooperate in order to reach a decision. Conventionally, the members of an ensemble are trained sequentially, and typically independently, and are not brought together until the final stages of ensemble generation. In this paper, we discuss the potential benefits of training classifiers together, so that they learn to interact at an early stage of their development. As a potential mechanism for achieving this, we consider the biological concept of mutualism, whereby cooperation emerges over the course of biological evolution. We also discuss potential mechanisms for implementing this approach within an evolutionary algorithm context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bascompte, J., Jordano, P.: Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38(1), 567–593 (2007)

    Article  Google Scholar 

  2. Biere, A., Bennett, A.E.: Three-way interactions between plants, microbes and insects. Funct. Ecol. 27(3), 567–573 (2013)

    Article  Google Scholar 

  3. Bull, L.: Learning Classifier Systems: A Brief Introduction. Applications of Learning Classifier Systems, pp. 1–12. Springer, Berlin (2004)

    Google Scholar 

  4. Fuente, L.A., Lones, M.A., Turner, A.P., Stepney, S., Caves, L.S., Tyrrell, A.M.: Computational models of signalling networks for non-linear control. BioSystems 112(2), 122–130 (2013)

    Article  Google Scholar 

  5. Kuhn, M., Johnson, K.: Applied Predictive Modeling. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  6. Kuncheva, L.I.: Combining Pattern Classifiers. Wiley-Interscience, Chichester (2004)

    Book  MATH  Google Scholar 

  7. Lacy, S., Lones, M.A., Smith, S.L.: A comparison of evolved linear and non-linear ensemble vote aggregators. In: Proceedings of 2015 Congress on Evolutionary Computation, CEC 2015. IEEE Press, May 2015

    Google Scholar 

  8. Lacy, S., Lones, M.A., Smith, S.L.: Forming classifier ensembles with multimodal evolutionary algorithms. In: Proceeding of 2015 Congress on Evolutionary Computation, CEC 2015. IEEE Press, May 2015

    Google Scholar 

  9. Lones, M.A., Smith, S.L., Alty, J.E., Lacy, S.E., Possin, K.L., Jamieson, D.R.S., Tyrrell, A.M.: Evolving classifiers to recognize the movement characteristics of parkinson’s disease patients. IEEE Trans. Evol. Comput. 18(4), 559–576 (2014)

    Article  Google Scholar 

  10. Lones, M., Alty, J.E., Lacy, S.E., Jamieson, D., Possin, K.L., Schuff, N., Smith, S.L., et al.: Evolving classifiers to inform clinical assessment of parkinson’s disease. In: 2013 IEEE Symposium on Computational Intelligence in Healthcare and e-health (CICARE), pp. 76–82. IEEE (2013)

    Google Scholar 

  11. Lones, M.A., Turner, A.P., Fuente, L.A., Stepney, S., Caves, L.S., Tyrrell, A.M.: Biochemical connectionism. Nat. Comput. 12(4), 453–472 (2013)

    Article  MathSciNet  Google Scholar 

  12. Lones, M.A., Tyrrell, A.M.: Modelling biological evolvability: implicit context and variation filtering in enzyme genetic programming. BioSystems 76(13), 229–238 (2004)

    Article  Google Scholar 

  13. Lones, M.A., Tyrrell, A.M.: A co-evolutionary framework for regulatory motif discovery. In: IEEE Conference on Evolutionary Computation, CEC 2007, pp. 3894–3901. IEEE (2007)

    Google Scholar 

  14. Popovici, E., Bucci, A., Wiegand, R.P., De Jong, E.D.: Coevolutionary Principles. Handbook of Natural Computing, pp. 987–1033. Springer, Berlin (2012)

    Google Scholar 

  15. Reynolds, R.G.: An introduction to cultural algorithms. In: Proceedings of the Third Annual Conference on Evolutionary Programming, pp. 131–139 (1994)

    Google Scholar 

  16. Santos, F.C., Pinheiro, F.L., Lenaerts, T., Pacheco, J.M.: The role of diversity in the evolution of cooperation. J. Theor. Biol. 299, 88–96 (2012)

    Article  MathSciNet  Google Scholar 

  17. Sörensen, K.: Metaheuristics—the metaphor exposed. Int. Trans. Oper. Res. 22(1), 3–18 (2015)

    Article  MathSciNet  Google Scholar 

  18. Spector, L., Luke, S.: Cultural transmission of information in genetic programming. In: Proceedings of the First Annual Conference on Genetic Programming, pp. 209–214. MIT Press (1996)

    Google Scholar 

  19. Stewart, J.E.: The direction of evolution: the rise of cooperative organization. Biosystems 123, 27–36 (2014)

    Article  Google Scholar 

  20. Turcotte, M.M., Corrin, M.S.C., Johnson, M.T.J.: Adaptive evolution in ecological communities. PLoS Biol. 10(5), e1001332 (2012)

    Article  Google Scholar 

  21. Wang, B., Qiu, Y.L.: Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16(5), 299–363 (2006)

    Article  Google Scholar 

  22. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178(15), 2985–2999 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the EPSRC [grant ref. EP/M013677/1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Lones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lones, M.A., Lacy, S.E., Smith, S.L. (2015). Evolving Ensembles: What Can We Learn from Biological Mutualisms?. In: Lones, M., Tyrrell, A., Smith, S., Fogel, G. (eds) Information Processing in Cells and Tissues. IPCAT 2015. Lecture Notes in Computer Science(), vol 9303. Springer, Cham. https://doi.org/10.1007/978-3-319-23108-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23108-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23107-5

  • Online ISBN: 978-3-319-23108-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics