Skip to main content

The SIR Model and Identification of Spreaders

  • Chapter
Diffusion in Social Networks

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

Abstract

In this chapter, we review the classic susceptible-infected-recovered (SIR) model for disease spread as applied to a social network. In particular, we look at the problem of identifying nodes that are “spreaders” which cause a large part of the population to become infected under this model. To do so, we survey a variety of nodal measures based on centrality (degree, betweenness, etc.) and other methods (shell decomposition, nearest neighbor analysis, etc.). We then present a set of experiments that illustrate the relation of these nodal measures to spreading under the SIR model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Technically, the work of Antal et al. [1] proves that the fixation probability for a single mutant invader is proportional to the degree of that node. However, the expected number of mutants, in the limit as time goes to infinity, can simply be computed by multiplying fixation probability by the number of nodes in the network.

References

  1. Antal, T., Redner, S., Sood, V. (2006). Evolutionary dynamics on degree-heterogeneous graphs. Physical review letters, 96 (18), 188104.

    Article  Google Scholar 

  2. Anderson, Roy M., May, Robert M. (1979). Population biology of infectious diseases: Part i. 280 (5721), 361.

    Google Scholar 

  3. Macdonald, B., Shakarian, P., Howard, N., Moores, G. (2012). Spreaders in the Network SIR Model: An Empirical Study. (USMA Technical Report).

    Google Scholar 

  4. Arenas, Alex. (2012). Network data sets.

    Google Scholar 

  5. Bonacich, Phillip. (1972). Factoring and weighting approaches to status scores and clique identification. The journal of mathematical sociology. 2 (1), 113–120.

    Article  Google Scholar 

  6. Borgatti, S., Everett, M. (2006). A Graph-theoretic perspective on centrality. Social networks 28 (4), 466–484.

    Article  Google Scholar 

  7. Borge-Holthoefer, Javier, & Moreno, Yamir. (2012). Absence of influential spreaders in rumor dynamics. Phys. rev. e, 85 (026116).

    Google Scholar 

  8. Borge-Holthoefer, Javier, Rivero, Alejandro, & Moreno, Yamir. (2012). Locating privileged spreaders on an online social network. Phys. rev. e 85 (Jun), 066123.

    Google Scholar 

  9. Brandes, Ulrik. (2001). A faster algorithm for betweenness centrality. Journal of mathematical sociology, 25 (163).

    Google Scholar 

  10. Callaway, Duncan S., Newman, M. E. J., Strogatz, Steven H., & Watts, Duncan J. (2000). Network robustness and fragility: Percolation on random graphs. Phys. rev. lett., 85(Dec), 5468–5471.

    Article  Google Scholar 

  11. Carmi, Shai, Havlin, Shlomo, Kirkpatrick, Scott, Shavitt, Yuval, & Shir, Eran (2007). From the Cover: A model of Internet topology using k-shell decomposition. Pnas, 104 (27), 11150–11154.

    Article  Google Scholar 

  12. Castellano, & Pastor-Satorras, Romualdo. (2012). Competing activation mechanisms in epidemics on networks. Scientific reports, 2 (371).

    Google Scholar 

  13. Chen, Duanbing, L, Linyuan, Shang, Ming-Sheng, Zhang, Yi-Cheng, & Zhou, Tao (2012). Identifying influential nodes in complex networks. Physics a: Statistical mechanics and its applications, 391(4), 1777–1787.

    Google Scholar 

  14. Cohen, Reuven, Erez, Keren, ben Avraham, Daniel, & Havlin, Shlomo. (2000). Resilience of the Internet to Random Breakdowns. Physical review letters, 85(21), 4626–4628.

    Google Scholar 

  15. Freeman, Linton C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), pp. 35–41.

    Google Scholar 

  16. Freeman, Linton C. (1979). Centrality in social networks conceptual clarification. Social networks, 1 (3), 215–239.

    Google Scholar 

  17. Kitsak, Maksim, Gallos, Lazaros K., Havlin, Shlomo, Liljeros, Fredrik, Muchnik, Lev, Stanley, H. Eugene, & Makse, Hernan A. (2010). Identification of influential spreaders in complex networks. Nat phys, 6 (11), 888–893.

    Google Scholar 

  18. Leskovec, Jure. (2012). Stanford network analysis project (snap).

    Google Scholar 

  19. Luis E. C. Rocha, Fredrik Liljeros, & Holme, Petter. (2010). Information dynamics shape the sexual networks of internet-mediated prostitution. Proceedings of the national academy of sciences, March.

    Google Scholar 

  20. Madar, N., Kalisky, T., Cohen, R., ben Avraham, D., & Havlin, S. (2004). Immunization and epidemic dynamics in complex networks.The European physical journal b - condensed matter and complex systems, 38 (2), 269–276.

    Google Scholar 

  21. Newman, Mark. (2011). Network data.

    Google Scholar 

  22. Page, L., Brin, S., Motwani, R., & Winograd, T. (1998). The pagerank citation ranking: Bringing order to the web. Pages 161–172 of: Proceedings of the 7th international world wide web conference.

    Google Scholar 

  23. Seidman, Stephen B. (1983). Network structure and minimum degree. Social networks, 5 (3), 269–287.

    Article  MathSciNet  Google Scholar 

  24. Wasserman, Stanley, & Faust, Katherine. (1994). Social network analysis: Methods and applications. 1 edn. Structural analysis in the social sciences, no. 8. Cambridge University Press.

    Google Scholar 

  25. Zafarani, R., & Liu, H. (2009). Social computing data repository at ASU.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Shakarian, P., Bhatnagar, A., Aleali, A., Shaabani, E., Guo, R. (2015). The SIR Model and Identification of Spreaders. In: Diffusion in Social Networks. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-23105-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23105-1_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23104-4

  • Online ISBN: 978-3-319-23105-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics