Skip to main content

Shale Gas Formations and Their Potential for Carbon Storage: Opportunities and Outlook

  • Chapter
  • First Online:
Mechanisms for CO2 Sequestration in Geological Formations and Enhanced Gas Recovery

Part of the book series: Springer Theses ((Springer Theses))

  • 891 Accesses

Abstract

Shale gas resources are proving to be globally abundant and the development of these resources can support the geologic storage of CO2 (carbon dioxide) to mitigate the climate impacts of global carbon emissions from power and industrial sectors. This chapter reviews global shale gas resources and considers both the opportunities and challenges for their development. It then provides a review of the literature on opportunities to store CO2 in shale, thus possibly helping to mitigate the impact of CO2 emissions from the power and industrial sectors. The studies reviewed indicate that the opportunity for geologic storage of CO2 in shales is significant, but knowledge of the characteristics of the different types of shale gas found globally is required. The potential for CO2 sorption as part of geologic storage in depleted shale gas reservoirs must be assessed with respect to the individual geology of each formation. Likewise, the introduction of CO2 into shale for enhanced gas recovery (EGR) operations may significantly improve both reservoir performance and economics. Based on this review, we conclude that there is a very good opportunity globally regarding the future of geologic storage of CO2 in depleted shale gas formations and as part of EGR operations.

Published in: Environmental Processes, 2014 1:595–611 DOI 10.1007/s40710-014-0036-4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. British Petroleum, BP Energy Outlook 2030, 2013.

    Google Scholar 

  2. Exxon Mobil, The Outlook for Energy: A View to 2040, 2013.

    Google Scholar 

  3. Shell, New Lens Scenarios: A Shift in Perspective for a World in Transition, 2013.

    Google Scholar 

  4. International Energy Agency. (2013). CO 2 emissions from fuel combustion: Highlights (2013th ed.). International Energy Agency: France.

    Google Scholar 

  5. IPCC, IPCC, (2014). Summary for policymakers, in climate change 2014, mitigation of climate change. In O. Edenhofer, et al., (Eds.) 2014, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: Cambridge. United Kingdom and New York, NY, USA. 2014.

    Google Scholar 

  6. International Energy Agency. (2012). World energy outlook 2012. Paris: OECD Publishing.

    Google Scholar 

  7. Tao, Z., & Clarens, A. (2013). Estimating the carbon sequestration capacity of shale formations using methane production rates. Environmental Science and Technology, 47(19), 11318–11325.

    Article  Google Scholar 

  8. Rodosta, T., Hull, J., & Zoback, M. (2013). Interdisciplinary investigation of CO2 sequestration in depleted shale gas formations. U.S. Department of Energy.

    Google Scholar 

  9. Nicot, J.-P., & Duncan, I. J. (2012). Common attributes of hydraulically fractured oil and gas production and CO2 geological sequestration. Greenhouse Gases: Science and Technology, 2(5), 352–368.

    Article  Google Scholar 

  10. McGlade, C., Speirs, J., & Sorrell, S. (2013). Unconventional gas—a review of regional and global resource estimates. Energy, 55, 571–584.

    Article  Google Scholar 

  11. Kuuskraa, V., Stevens, S. H., & Moodhe, K. D. (2013). Technically recoverable shale oil and shale gas resources: An assessment of 137 shale formations in 41 Countries outside the United States 2013.

    Google Scholar 

  12. Lux Research, China shale proves difficult. In Exploration And Production Journal 2013. http://blog.luxresearchinc.com/blog/coveragearea/china-innovation/.

  13. Ibrahim, R. (2013). MENA region moving ahead on shale gas. Manaar energy consulting and project management. Manaar Monthly Newsletter. Retrieved April 10, 2013, from http://www.manaarco.com/images/presentations/Manaar20Newsletter20February202013.pdf.

  14. Martin, A. N. (2012). The potential pitfalls of using north american tight and shale gas development techniques in the North African and Middle Eastern environments. SPE Economics & Management, 3(4), 147–157.

    Article  Google Scholar 

  15. Baxter, K. (2013). Saudi Aramco to release design tender for shale gas. MEED News. Retrived May 5, 2013, from http://www.meedinsight.com.

  16. Peduzzi, P., & Harding, R. (2013). Rohr Reis, Gas fracking: Can we safely squeeze the rocks? Environmental Development, 6, 86–99.

    Article  Google Scholar 

  17. Wang, Q., Chen, X., Jha, A. N., & Rogers, H. (2014). Natural gas from shale formation–the evolution, evidences and challenges of shale gas revolution in United States. Renewable and Sustainable Energy Reviews, 30, 1–28.

    Article  Google Scholar 

  18. Soeder, D.J., Shale gas development in the United States. In: A. Al-Megren, Hamid (Ed.), Advances in natural gas technology. ISBN: 978-953-51-0507-7 (April 2012, InTech, Rijeka, Croatia, 542 pp. http://www.intechopen.com/books/advances-in-natural-gas-technology). Advances in Natural Gas Technology. Intech, Croatia, 2012.

  19. Speight, J. G. (2013). Shale gas production processes (pp. i–iii). Boston: Gulf Professional Publishing.

    Google Scholar 

  20. British Petroleum. (2012). Statistical review of world energy. www.bp.com.

  21. NPC. (2011). Prudent development: Realizing the potential of North America’s abundant natural gas and oil resources. Washington, DC: National Petroleum Council. www.npc.org.

  22. GAO. (2012). Information on shale resources, development, and environmental and public health risks. Report No. GAO-12-732. Report to Congressional Requesters. United States Government Accountability Office, Washington, DC. September, 2012.

    Google Scholar 

  23. NEB. (2009). A primer for understanding canadian shale gas. Calgary, Alberta, Canada: National Energy Board. Retrieved January 6, 2012 from http://www.neb.gc.ca/clf-nsi/rnrgynfmtn/nrgyrprt/ntrlgs/prmrndrstndngshlgs2009/prmrndrstndngshlgs2009-eng.pdf.

  24. Rivard, C., Lavoie, D., Lefebvre, R., Séjourné, S., Lamontagne, C., & Duchesne, M. (2013). An overview of Canadian shale gas production and environmental concerns. International Journal of Coal Geology, 126, 64–76.

    Article  Google Scholar 

  25. Lavoie, D., Rivard, C., Lefebvre, R., Séjourné, S., Thériault, R., Duchesne, M., et al. (2013). The Utica Shale and gas play in southern Quebec: Geological and hydrogeological syntheses and methodological approaches to groundwater risk evaluation. International Journal of Coal Geology, 126, 77–91.

    Article  Google Scholar 

  26. Leather, D. T., Bahadori, A., Nwaoha, C., & Wood, D. A. (2013). A review of Australia’s natural gas resources and their exploitation. Journal of Natural Gas Science and Engineering, 10, 68–88.

    Article  Google Scholar 

  27. Karcz, P., Janas, M., & Dyrka, I. (2013). Polish shale gas deposits in relation to selected shale gas prospective areas of Central and Eastern Europe. Przegląd Geologiczny 61(11), (11).

    Google Scholar 

  28. Kiersnowski, H., & Dyrka, I. (2013). Ordovician-Silurian shale gas resources potential in Poland: evaluation of Gas Resources Assessment Reports published to date and expected improvements for 2014 forthcoming Assessment.

    Google Scholar 

  29. Geny, F. (2010). Can unconventional gas be a game changer in European markets? Oxford Institute for Energy Studies. Nat Gas Ser, 46(120), 2010.

    Google Scholar 

  30. Soeder, D. J., Sharma, S., Pekney, N., Hopkinson, L., Dilmore, R., Kutchko, B., et al. (2014). An approach for assessing engineering risk from shale gas wells in the United States. International Journal of Coal Geology, 126, 4–19.

    Article  Google Scholar 

  31. Mokhatab, S., Araujo Fresky, M., & Rafiqul Islam, M. (2006). Applications of nanotechnology in oil and gas E&P. Journal of Petroleum Technology 58(4), (4).

    Google Scholar 

  32. Hosterman, J. W., & Whitlow, S. I. (1981). Munsell color value as related to organic carbon in Devonian shale of Appalachian basin. AAPG Bulletin, 65(2), 333–335.

    Google Scholar 

  33. Blatt, H., Tracy, R. J., & Owens, B. (1996). Petrology-igneous sedimentary, and metamorphic (pp. 377–380). New York: WH Freeman &Co.

    Google Scholar 

  34. Bustin, R., Bustin, A., Cui, A., Ross, D., & Murthy Pathi, V. (2008). Impact of shale properties on pore structure and storage characteristics. In SPE Paper 119892 Presented at the Society of Petroleum Engineers Shale Gas Production Conference in Fort Worth, Texas; November 16–18, 2008. 2008.

    Google Scholar 

  35. Chalmers, G. R., Bustin, R. M., & Power, I. M. (2012). Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bulletin, 96(6), 1099–1119.

    Article  Google Scholar 

  36. Fowler, M. G., Obermajer, M., & Stasiuk, L. D. (2003). Rock-Eval/TOC data for Devonian potential source rocks, Western Canada Sedimentary Basin. 2003: Geological Survey of Canada, Open file 1579.

    Google Scholar 

  37. Montgomery, S. L., Jarvie, D. M., Bowker, K. A., & Pollastro, R. M. (2005). Mississippian Barnett Shale, Fort Worth basin, north-central Texas: Gas-shale play with multi–trillion cubic foot potential. AAPG bulletin, 89(2), 155–175.

    Article  Google Scholar 

  38. Wust, R., Nassichuk, B., Brezovski, R., Hackley, P., & Willment, N. (2013). Vitrinite reflectance versus pyrolysis Tmax data: Assessing thermal maturity in shale plays with special reference to the Duvernay shale play of the Western Canadian Sedimentary Basin, Alberta, Canada. In 2013 SPE Unconventional Resources Conference & Exhibition-Asia Pacific.

    Google Scholar 

  39. Brathwaite, L. D. (2009). Shale-deposited natural gas: A review of potential. California: California Energy Commission, 2009:33.

    Google Scholar 

  40. Martini, A. M., Walter, L. M., Ku, T. C., Budai, J. M., McIntosh, J. C., & Schoell, M. (2003). Microbial production and modification of gases in sedimentary basins: A geochemical case study from a Devonian shale gas play, Michigan basin. AAPG bulletin, 87(8), 1355–1375.

    Article  Google Scholar 

  41. Bruner, K. R., & Smosna, R. (2011). A comparative study of the mississippian barnett shale, fort worth basin, and Devonian marcellus shale, appalachian basin. National Energy Technology Laboratory, 2011, DOE/NETL-2011/1478.

    Google Scholar 

  42. Wang, S., Song, Z., Cao, T., & Song, X. (2013). The methane sorption capacity of Paleozoic shales from the Sichuan Basin, China. Marine and Petroleum Geology, 44, 112–119.

    Article  Google Scholar 

  43. Soeder, D. J. (1988). Porosity and permeability of eastern Devonian gas shale. SPE Formation Evaluation. 116–124.

    Google Scholar 

  44. Diaz-Campos, M., Akkutlu, I. Y., & Sondergeld, C. H. (2010). New pore-scale considerations for shale gas in place calculations. Society of Petroleum Engineers, Paper SPE, 131772, 17p.

    Google Scholar 

  45. Ambrose, R. J., Hartman, R. C., Diaz-Campos, M., Akkutlu, I. Y., & Sondergeld, C. H. (2012). Shale gas-in-place calculations part I: new pore-scale considerations. SPE Journal, 17(01), 219–229.

    Article  Google Scholar 

  46. Shabro, V., Torres-Verdin, C., & Javadpour, F. (2011). Numerical simulation of shale-gas production: From pore-scale modeling of slip-flow, Knudsen diffusion, and Langmuir desorption to reservoir modeling of compressible fluid. In SPE-144355, paper presented at the Unconventional Gas Conference, SPE, The Woodlands, TX.

    Google Scholar 

  47. Slatt, R. M., & O’Brien, N. R. (2011). Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bulletin, 95(12), 2017–2030.

    Article  Google Scholar 

  48. Loucks, R. G., Reed, R. M., Ruppel, S. C., & Hammes, U. (2012). Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96(6), 1071–1098.

    Article  Google Scholar 

  49. Chalmers, G. R., & Bustin, R. M. (2007). The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada. International Journal of Coal Geology, 70(1), 223–239.

    Article  Google Scholar 

  50. Bowker, K. A. (2007). Barnett shale gas production, Fort Worth Basin: Issues and discussion. AAPG Bulletin, 91(4), 523–533.

    Article  Google Scholar 

  51. Curtis, J. B. (2002). Fractured shale-gas systems. AAPG Bulletin, 86(11), 1921–1938.

    Google Scholar 

  52. Jarvie, D. M., Hill, R. J., Ruble, T. E., & Pollastro, R. M. (2007). Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4), 475–499.

    Article  Google Scholar 

  53. Harris, L. D., de Witt Jr, W., & Colton, G. (1970). What are possible stratigraphic controls for gas fields in eastern black shale? Oil & Gas Journal, 76(14), 162–165.

    Google Scholar 

  54. Gasparik, M., Ghanizadeh, A., Gensterblum, Y., & Krooss, B. M. (2013). “Multi-temperature” method for high-pressure sorption measurements on moist shales. Review of Scientific Instruments, 84(8), 085116.

    Article  Google Scholar 

  55. Gasparik, M., Ghanizadeh, A., Bertier, P., Gensterblum, Y., Bouw, S., & Krooss, B. M. (2012). High-pressure Methane sorption isotherms of black shales from The Netherlands. Energy & Fuels, 26(8), 4995–5004.

    Article  Google Scholar 

  56. Gasparik, M., Bertier, P., Gensterblum, Y., Ghanizadeh, A., Krooss, B. M., & Littke, R. (2013). Geological controls on the methane storage capacity in organic-rich shales. International Journal of Coal Geology, 123, 34–51.

    Google Scholar 

  57. Hartwig, A., & Schulz, H.-M. (2010). Applying classical shale gas evaluation concepts to Germany—Part I: The basin and slope deposits of the Stassfurt Carbonate (Ca2, Zechstein, Upper Permian) in Brandenburg. Chemie der Erde-Geochemistry, 70, 77–91.

    Article  Google Scholar 

  58. Ji, L., Zhang, T., Milliken, K. L., Qu, J., & Zhang, X. (2012). Experimental investigation of main controls to methane adsorption in clay-rich rocks. Applied Geochemistry, 27(12), 2533–2545.

    Article  Google Scholar 

  59. Lu, X.-C., Li, F.-C., & Watson, A. T. (1995). Adsorption measurements in Devonian shales. Fuel, 74(4), 599–603.

    Article  Google Scholar 

  60. Ross, D. J., & Marc, R. (2009). Bustin, The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology, 26(6), 916–927.

    Article  Google Scholar 

  61. Zhang, T., Ellis, G. S., Ruppel, S. C., Milliken, K., & Yang, R. (2012). Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Organic Geochemistry, 47, 120–131.

    Article  Google Scholar 

  62. Khosrokhavar, R., Wolf, K.-H., & Bruining, H. (2014). Sorption of CH4 and CO2 on a carboniferous shale from Belgium using a manometric setup. International Journal of Coal Geology, 128, 153–161.

    Article  Google Scholar 

  63. Rexer, T. F., Mathia, E. J., Aplin, A. C., & Thomas, K. M. (2014). High-pressure methane adsorption and characterization of pores in posidonia shales and isolated kerogens. Energy & Fuels, 28(5), 2886–2901.

    Article  Google Scholar 

  64. Gensterblum, Y., Busch, A., & Krooss, B. M. (2014). Molecular concept and experimental evidence of competitive adsorption of H2O, CO2 and CH4 on organic material. Fuel, 115, 581–588.

    Article  Google Scholar 

  65. Amann-Hildenbrand, A., Bertier, P., Busch, A., & Krooss, B. M. (2013). Experimental investigation of the sealing capacity of generic clay-rich caprocks. International Journal of Greenhouse Gas Control, 19, 620–641.

    Article  Google Scholar 

  66. Beaton, A. P., Pawlowicz, J. G., Anderson, S. D. A., Berhane, H., & Rokosh, C. D. (2010). Rock eval, total organic carbon and adsorption isotherms of the duvernay and muskwa formations in alberta: shale gas data release 2010: alberta geological survey, open file report 2010–05.

    Google Scholar 

  67. Weniger, P., Kalkreuth, W., Busch, A., & Krooss, B. M. (2010). High-pressure methane and carbon dioxide sorption on coal and shale samples from the Paraná Basin, Brazil. International Journal of Coal Geology, 84(3), 190–205.

    Article  Google Scholar 

  68. Wilcox, J. (2012). Carbon capture. New York: Springer.

    Google Scholar 

  69. Khosrokhavar, R., Schoemaker, C., Battistutta, E., Wolf, K.-H. A., & Bruining, J. (2012). Sorption of CO2 in shales using the manometric set-up. In SPE Europec/EAGE Annual Conference. 2012. Society of Petroleum Engineers.

    Google Scholar 

  70. Class, H., Ebigbo, A., Helmig, R., Dahle, H. K., Nordbotten, J. M., Celia, M. A., et al. (2009). A benchmark study on problems related to CO2 storage in geologic formations. Computational Geosciences, 13(4), 409–434.

    Article  MATH  Google Scholar 

  71. Elder, J. (1968). The unstable thermal interface. Journal of Fluid Mechanics, 32(1), 69–96.

    Article  Google Scholar 

  72. Ennis-King, J., Preston, I., & Paterson, L. (2005). Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Physics of Fluids, 17(8), 084107–084107-15.

    Google Scholar 

  73. Foster, T. D. (1965). Onset of convection in a layer of fluid cooled from above. Physics of Fluids, 8, 1770.

    Article  Google Scholar 

  74. Gasda, S. E. (2010). Numerical models for evaluating CO2 storage in deep saline aquifers: Leaky wells and large-scale geological features. Ph.D. Thesis. http://arks.princeton.edu/ark:/88435/dsp01j098zb09n.

  75. Riaz, A., Hesse, M., Tchelepi, H., & Orr, F. (2006). Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. Journal of Fluid Mechanics, 548, 87–111.

    Article  MathSciNet  Google Scholar 

  76. Walker, K. L., & Homsy, G. M. (1978). Convection in a porous cavity. Journal of Fluid Mechanics, 87(Part 3), 449–474.

    Google Scholar 

  77. Van Duijn, C., Pieters, G., & Raats, P. (2004). Steady flows in unsaturated soils are stable. Transport in Porous Media, 57(2), 215–244.

    Article  MathSciNet  Google Scholar 

  78. Myint, P. C., & Firoozabadi, A. (2013). Onset of convection with fluid compressibility and interface movement. Physics of Fluids, 25, 094105.

    Article  Google Scholar 

  79. Elenius, M. T., & Johannsen, K. (2012). On the time scales of nonlinear instability in miscible displacement porous media flow. Computational Geosciences, 16(4), 901–911.

    Article  Google Scholar 

  80. Pau, G. S., Bell, J. B., Pruess, K., Almgren, A. S., Lijewski, M. J., & Zhang, K. (2010). High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers. Advances in Water Resources, 33(4), 443–455.

    Article  Google Scholar 

  81. Neufeld, J. A., Hesse, M. A., Riaz, A., Hallworth, M. A., Tchelepi, H. A., & Huppert, H. E. (2010). Convective dissolution of carbon dioxide in saline aquifers. Geophysical Research Letters, 37 (22), 22.

    Google Scholar 

  82. MacMinn, C. W., Neufeld, J. A., Hesse, M. A., & Huppert, H. E. (2012). Spreading and convective dissolution of carbon dioxide in vertically confined, horizontal aquifers. Water Resources Research, 48, W11516(11).

    Google Scholar 

  83. Iglauer, S. (2011). Dissolution trapping of carbon dioxide in reservoir formation brine–a carbon storage mechanism. Mass Transfer (H. Nakajima (Ed.), Rijeka: InTech.

    Google Scholar 

  84. Bachu, S. (2002). Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into the CO2 phase space. Energy Conversion and Management, 43(1), 87–102.

    Article  Google Scholar 

  85. Busch, A., Alles, S., Gensterblum, Y., Prinz, D., Dewhurst, D. N., Raven, M. D., et al. (2008). Carbon dioxide storage potential of shales. International Journal of Greenhouse Gas Control, 2(3), 297–308.

    Article  Google Scholar 

  86. Busch, A., Alles, S., Krooss, B. M., Stanjek, H., & Dewhurst, D. (2009). Effects of physical sorption and chemical reactions of CO2 in shaly caprocks. Energy Procedia, 1(1), 3229–3235.

    Article  Google Scholar 

  87. Nuttall, B. C., Eble, C. F., Drahovzal, J. A., & Bustin, R. M. (2005). Analysis of Devonian black shales in Kentucky for potential carbon dioxide sequestration and enhanced natural gas production. Kentucky Geological Survey Report DE-FC26-02NT41442.

    Google Scholar 

  88. Lahann, R., Mastalerz, M., Rupp, J. A., & Drobniak, A. (2013). Influence of CO2 on New Albany Shale composition and pore structure. International Journal of Coal Geology, 108, 2–9.

    Article  Google Scholar 

  89. Godec, M., Koperna, G., Petrusak, R., & Oudinot, A. (2013). Assessment of factors influencing CO2 storage capacity and injectivity in Eastern U.S. Gas shales. Energy Procedia, 37, 6644–6655.

    Google Scholar 

  90. Khosrokhavar, R., Elsinga, G., Farajzadeh, R., & Bruining, H. (2014). Visualization and investigation of natural convection flow of CO2 in aqueous and oleic systems. Journal of Petroleum Science and Engineering, 2014(0).

    Google Scholar 

  91. Bachu, S., Gunter, W., & Perkins, E. (1994). Aquifer disposal of CO2: Hydrodynamic and mineral trapping. Energy Conversion and Management, 35(4), 269–279.

    Article  Google Scholar 

  92. Kang, S. M., Fathi, E., Ambrose, R., Akkutlu, I., & Sigal, R. (2011). Carbon dioxide storage capacity of organic-rich shales. SPE Journal, 16(4), 842–855.

    Article  Google Scholar 

  93. Blok, K., Williams, R., Katofsky, R., & Hendriks, C. A. (1997). Hydrogen production from natural gas, sequestration of recovered CO2 in depleted gas wells and enhanced natural gas recovery. Energy, 22(2), 161–168.

    Article  Google Scholar 

  94. Oldenburg, C., Pruess, K., & Benson, S. M. (2001). Process modeling of CO2 injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery. Energy & Fuels, 15(2), 293–298.

    Article  Google Scholar 

  95. Schepers, K. C., Nuttall, B. C., Oudinot, A. Y., & Gonzalez, R. J. (2009). Reservoir modeling and simulation of the Devonian gas shale of eastern Kentucky for enhanced gas recovery and CO2 storage. In SPE International Conference on CO 2 Capture Storage and Utilization. SPE 126620, 2009. Society of Petroleum Engineers.

    Google Scholar 

  96. Câmara, G., Andrade, C., & Silva, A. (2013). Júnior, and P. Rocha, Storage of carbon dioxide in geological reservoirs: Is it a cleaner technology? Journal of Cleaner Production, 47, 52–60.

    Article  Google Scholar 

  97. Regan, M. (2007). A review of the potential for Carbon Dioxide (CO2) enhanced gas recovery in Australia. Cooperative Research Centre for Greenhouse Gas Technologies, Canberra. CO2CRC Publication No: RPT07-0802. 39p.

    Google Scholar 

  98. Liu, F., Ellett, K., Xiao, Y., & Rupp, J. A. (2013). Assessing the feasibility of CO2 storage in the New Albany Shale (Devonian–Mississippian) with potential enhanced gas recovery using reservoir simulation. International Journal of Greenhouse Gas Control, 17, 111–126.

    Article  Google Scholar 

  99. Perry, R. H., Green, D. W., & Maloney, J. O. (1984). Perry’s chemical engineer’s handbook, in Perry’s chemical engineer’s handbook. McGraw-Hill Book.

    Google Scholar 

  100. Iijima, M., Nagayasu, T., Kamijyo, T., & Nakatani, S. (2011). MHI’s energy efficient flue gas CO2 capture technology and large scale CCS demonstration test at Coal-fired power plants in USA. Mitsubishi Heavy Industries Technical Review, 48(1), 26–32.

    Google Scholar 

  101. Godec, M., Koperna, G., Petrusak, R., & Oudinot, A. (2013). Potential for enhanced gas recovery and CO2 storage in the marcellus shale in the Eastern United States. International Journal of Coal Geology, 118, 95–104.

    Article  Google Scholar 

  102. Al-Hasami, A., Ren, S., & Tohidi, B. (2005). CO2 injection for enhanced gas recovery and geo-storage: reservoir simulation and economics. In SPE Europec/EAGE Annual Conference. Society of Petroleum Engineers Inc., Madrid, Spain. http://dx.doi.org/10.2118/94129-MS.

  103. Ishida, T., Aoyagi, K., Niwa, T., Chen, Y., Murata, S., Chen, Q., & Nakayama, Y. (2012). Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2. Geophysical Research Letters, 39 L16309(16).

    Google Scholar 

  104. Ross, D. J., & Marc Bustin, R. (2007). Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs. Fuel, 86(17), 2696–2706.

    Article  Google Scholar 

  105. Chareonsuppanimit, P., Mohammad, S. A., Robinson Jr, R. L., & Gasem, K. A. (2012). High-pressure adsorption of gases on shales: Measurements and modeling. International Journal of Coal Geology, 95, 34–46.

    Google Scholar 

  106. Rexer, T. F., Benham, M. J., Aplin, A. C., & Thomas, K. M. (2013). Methane adsorption on shale under simulated geological temperature and pressure conditions. Energy & Fuels, 27(6), 3099–3109.

    Google Scholar 

  107. Economist. http://www.economist.com/news/business/21571171-extracting-europes-shale-gas-and-oil-will-be-slow-and-difficult-business-frack-future. 2013.

  108. Weijermars, R. (2014) US shale gas production outlook based on well roll-out rate scenarios. Applied Energy, 124, 283–297.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roozbeh Khosrokhavar .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khosrokhavar, R. (2016). Shale Gas Formations and Their Potential for Carbon Storage: Opportunities and Outlook. In: Mechanisms for CO2 Sequestration in Geological Formations and Enhanced Gas Recovery. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-23087-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23087-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23086-3

  • Online ISBN: 978-3-319-23087-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics