Skip to main content

Sorption of CH4 and CO2 on Belgium Carboniferous Shale Using a Manometric Set-up

  • Chapter
  • First Online:
Mechanisms for CO2 Sequestration in Geological Formations and Enhanced Gas Recovery

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Shale gas resources are globally abundant and the development of these resources can increase CH4 production. It is of interest to study the possibility of enhancing CH4 production by CO2 injection (Enhanced Gas Recovery—EGR). Some studies indicate that, in shale, five molecules of CO2 can be stored for every molecule of CH4 produced. The technical feasibility of Enhanced Gas Recovery (EGR) needs to be investigated in more detail. The amount of extracted natural gas from shale has increased rapidly over the past decade. A typical shale gas reservoir combines an organic-rich deposition with extremely low matrix permeability. One important parameter in assessing the technical viability of (enhanced) production of shale gas is the sorption capacity. Our focus is on the sorption of CH4 and CO2. Therefore we have chosen to use the manometric method to measure the excess sorption isotherms of CO2 at 318 K and of CH4 at 308, 318 and 336 K and at pressures up to 105 bar on Belgium dry black shale from a depth of 745 m. The shale was obtained from a former coal mine in Zolder in the Campina Basin (North Belgium), which contains Westphalian coal and coal associated sediments of Northwest European origin. We derive the equations for excess sorption in the manometric set-up. Only a few measurements have been reported in the literature for high-pressure gas sorption on shales, and interest is largely focused on shales occurring outside Europe. The excess sorption isotherm shows an initial increase to a maximum value of 0.175 ± 0.004 mmol/g for CO2 and then starts to decrease until it becomes zero at 82 bar and subsequently the excess sorption becomes negative. Similar behaviour was also observed for other shales and coal reported in the literature. The experiments on CH4 show, as expected, decreasing sorption for increasing temperature. We apply an error analysis based on Monte-Carlo simulation. It shows that the error is increasing with increasing pressure, but that the manometric set-up can be used to determine the sorption capacity of CO2 and CH4 on the black shale with sufficient accuracy.

Published in: International Journal of Coal Geology volumes 128–129, 1 August 2014, pp. 153–161.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EGR:

Enhance Gas Recovery

TOC:

Total Organic Carbon

CCS:

Carbon Capture and Storage

EOS:

Equation of State

SEM:

Scanning Electron Microscope

XRF:

X-Ray Fluorescence, the elemental composition analysis

XRD:

X-Ray Diffraction, the mineral composition analysis

T :

Temperature

P :

Pressure

P f :

filling pressure

\( \rho \) :

Density of the gas

\( \rho_{eq}^{N - 1} \) :

Equilibrium density of gas in step N-1

\( \rho_{eq}^{N} \) :

Equilibrium density of gas in step N

\( \rho_{f}^{N} \) :

Density of the gas filled in the reference cell step N

\( V_{r} \) :

Volume of reference cell

\( V_{v} \) :

Void volume

\( V_{v}^{N} \) :

Void volume measured in step N

\( V_{v}^{0} \) :

Void volume measured by Helium prior to the gas sorption experiment

\( m_{ads}^{N - 1} \) :

Sorbed mass in step N-1

\( m_{ads}^{N} \) :

Sorbed mass in step N

\( {\Delta}V_{sw}^{N} \) :

The changes in void volume of the sample due to its swelling in step N

\( {\Delta}V_{ads}^{N} \) :

The changes in void volume of the sample due to the sorption in step N

\( {\Delta}V_{react}^{N} \) :

The changes in void volume of the sample due to the reaction in step N

References

  1. Shaoul, J. R., Van Zelm, L. F., & De Pater, H. J. (2011). Damage mechanisms in unconventional gas well stimulation-A new look at an old problem. In SPE Middle East Unconventional Gas Conference and Exhibition. Society of Petroleum Engineers.

    Google Scholar 

  2. Campin, D. (2013). Environmental regulation of hydraulic fracturing in Queensland. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.

    Google Scholar 

  3. U.S. Energy Information Administration. (2013). Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States. Washington, D.C: U.S. Department of Energy.

    Google Scholar 

  4. BP Statistical Review of World Energy, w.b.c., 2012.

    Google Scholar 

  5. Speight, J. G. (2013) Shale gas production processes (pp. i–iii). Boston: Gulf Professional Publishing.

    Google Scholar 

  6. NEB. (2009). A primer for understanding Canadian shale gas. Calgary, Alberta, Canada: National Energy Board.

    Google Scholar 

  7. International Energy Agency. (2012). World energy outlook 2012. Paris: OECD Publishing.

    Google Scholar 

  8. Karcz, P.a., Janas, M., & Dyrka, I. (2013). Polish shale gas deposits in relation to selected shale gas prospective areas of Central and Eastern Europe.

    Google Scholar 

  9. McGlade, C., Speirs, J., & Sorrell, S. (2013). Unconventional gas—A review of regional and global resource estimates. Energy, 55, 571–584.

    Article  Google Scholar 

  10. Geny, F. (2010). Can unconventional gas be a game changer in European markets? Oxford Institute for Energy Studies. Natural Gas Service, 46(120), 2010.

    Google Scholar 

  11. Sinal, M.L. & Lancaster, G. (1987). Liquid CO fracturing: Advantages and limitations. Journal of Canadian Petroleum Technology 26(05), 26−30.

    Google Scholar 

  12. Ishida, T., Aoyagi, K., Niwa, T., Chen, Y., Murata, S., Chen, Q., & Nakayama, Y. (2012) Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2. Geophysical Research Letters, 39(16), L16309.

    Google Scholar 

  13. Beaton, A. (2010) Rock Eval, Total Organic Carbon and Adsorption Isotherms of the Duvernay and Muskwa Formations in Alberta: Shale Gas Data Release. Alberta Geological Survey.

    Google Scholar 

  14. Battistutta, E., Van Hemert, P., Lutynski, M., Bruining, H., & Wolf, K.-H. (2010). Swelling and sorption experiments on methane, nitrogen and carbon dioxide on dry Selar Cornish coal. International Journal of Coal Geology, 84(1), 39–48.

    Article  Google Scholar 

  15. Hall, F., Chunhe, Z., Gasem, K., Jr, R., & Dan, Y. (1994). Adsorption of pure methane, nitrogen, and carbon dioxide and their binary mixtures on wet Fruitland coal. In SPE Eastern Regional Meeting.

    Google Scholar 

  16. Weniger, P., Kalkreuth, W., Busch, A., & Krooss, B. M. (2010). High-pressure methane and carbon dioxide sorption on coal and shale samples from the Paraná Basin, Brazil. International Journal of Coal Geology, 84(3), 190–205.

    Article  Google Scholar 

  17. Ross, D. J., & Marc, R. (2009). Bustin, The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology, 26(6), 916–927.

    Article  Google Scholar 

  18. Yuan, W., Pan, Z., Li, X., Yang, Y., Zhao, C., Connell, L. D., et al. (2014). Experimental study and modelling of methane adsorption and diffusion in shale. Fuel, 117, 509–519.

    Article  Google Scholar 

  19. Gasparik, M., Ghanizadeh, A., Bertier, P., Gensterblum, Y., Bouw, S., & Krooss, B. M. (2012). High-Pressure Methane Sorption Isotherms of Black Shales from The Netherlands. Energy & Fuels, 26(8), 4995–5004.

    Article  Google Scholar 

  20. Gasparik, M., Ghanizadeh, A., Gensterblum, Y., & Krooss, B. M. (2013). “Multi-temperature” method for high-pressure sorption measurements on moist shales. Review of Scientific Instruments, 84(8), 085116.

    Article  Google Scholar 

  21. Khosrokhavar, R., Elsinga, G., Mojaddam, A., Farajzadeh, R., & Bruining, J. (2011). Visualization of natural convection flow of super critical CO2 in water by applying Schlieren Method. In SPE EUROPEC/EAGE Annual Conference and Exhibition.

    Google Scholar 

  22. Busch, A., Alles, S., Gensterblum, Y., Prinz, D., Dewhurst, D. N., Raven, M. D., et al. (2008). Carbon dioxide storage potential of shales. International Journal of Greenhouse Gas Control, 2(3), 297–308.

    Article  Google Scholar 

  23. Gensterblum, Y., Van Hemert, P., Billemont, P., Busch, A., Charriére, D., Li, D., et al. (2009). European inter-laboratory comparison of high pressure CO2 sorption isotherms. I: Activated carbon. Carbon, 47(13), 2958–2969.

    Article  Google Scholar 

  24. Kang, S. M., Fathi, E., Ambrose, R., Akkutlu, I., & Sigal, R. (2011). Carbon dioxide storage capacity of organic-rich shales. SPE Journal, 16(4), 842–855.

    Article  Google Scholar 

  25. Farajzadeh, R., Zitha, P. L., & Bruining, J. (2009). Enhanced mass transfer of CO2 into water: Experiment and modeling. Industrial and Engineering Chemistry Research, 48(13), 6423–6431.

    Article  Google Scholar 

  26. Eftekhari, A. A., Van Der Kooi, H., & Bruining, H. (2012). Exergy analysis of underground coal gasification with simultaneous storage of carbon dioxide. Energy, 45(1), 729–745.

    Google Scholar 

  27. Meulenbroek, B., Farajzadeh, R., & Bruining, H. (2013). The effect of interface movement and viscosity variation on the stability of a diffusive interface between aqueous and gaseous CO2. Physics of Fluids (1994-present), 25(7), 074103.

    Google Scholar 

  28. Nordbotten, J. M., & Celia, M.A. (2011). Geological Storage of CO 2 : Modeling Approaches for Large-Scale Simulation: Wiley. com.

    Google Scholar 

  29. Nordbotten, J. M., Celia, M. A., & Bachu, S. (2005). Injection and storage of CO2 in deep saline aquifers: Analytical solution for CO2 plume evolution during injection. Transport in Porous Media, 58(3), 339–360.

    Article  Google Scholar 

  30. Ranganathan, P., Farajzadeh, R., Bruining, H., & Zitha, P. L. (2012). Numerical simulation of natural convection in heterogeneous porous media for CO2 geological storage. Transport in Porous Media, 95(1), 25–54.

    Article  Google Scholar 

  31. Gasda, S. E. (2010) Numerical models for evaluating CO2 storage in deep saline aquifers: Leaky wells and large-scale geological features. Ph.D. Thesis. http://arks.princeton.edu/ark:/88435/dsp01j098zb09n.

  32. Kumar, A., Noh, M., Pope, G., Sepehrnoori, K., Bryant, S., & Lake, L. (2004). Reservoir simulation of CO2 storage in deep saline aquifers, paper SPE-89343. In Society of Petroleum Engineers Fourteenth Symposium on Improved Oil Recovery, Tulsa, OK.

    Google Scholar 

  33. Orr, F. (2004). Storage of carbon dioxide in geologic formations. Journal of Petroleum Technology, 56(9), 90–97.

    Article  Google Scholar 

  34. Regan, M. (2007). A Review of the Potential for Carbon Dioxide (CO 2 ) Enhanced Gas Recovery in Australia. Cooperative Research Centre for Greenhouse Gas Technologies, Canberra. CO2CRC Publication No: RPT07-0802. p. 392007.

    Google Scholar 

  35. Tao, Z., & Clarens, A. (2013). Estimating the carbon sequestration capacity of shale formations using methane production rates. Environmental Science and Technology, 47(19), 11318–11325.

    Article  Google Scholar 

  36. Bachu, S. (2002). Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into the CO2 phase space. Energy Conversion and Management, 43(1), 87–102.

    Article  Google Scholar 

  37. Bachu, S., Gunter, W., & Perkins, E. (1994). Aquifer disposal of CO2: Hydrodynamic and mineral trapping. Energy Conversion and Management, 35(4), 269–279.

    Article  Google Scholar 

  38. Busch, A., Alles, S., Krooss, B. M., Stanjek, H., & Dewhurst, D. (2009). Effects of physical sorption and chemical reactions of CO2 in shaly caprocks. Energy Procedia, 1(1), 3229–3235.

    Article  Google Scholar 

  39. Blok, K., Williams, R., Katofsky, R., & Hendriks, C. A. (1997). Hydrogen production from natural gas, sequestration of recovered CO2 in depleted gas wells and enhanced natural gas recovery. Energy, 22(2), 161–168.

    Article  Google Scholar 

  40. Oldenburg, C., Pruess, K., & Benson, S. M. (2001). Process modeling of CO2 injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery. Energy & Fuels, 15(2), 293–298.

    Article  Google Scholar 

  41. Liu, F., Ellett, K., Xiao, Y., & Rupp, J. A. (2013). Assessing the feasibility of CO2 storage in the New Albany Shale (Devonian–Mississippian) with potential enhanced gas recovery using reservoir simulation. International Journal of Greenhouse Gas Control, 17, 111–126.

    Article  Google Scholar 

  42. LeVan, M., Carta, G., & Green, D. (2007). Perry’s Chemical Engineers’ Handbook, 2007, Section.

    Google Scholar 

  43. Iijima, M., Nagayasu, T., Kamijyo, T., & Nakatani, S. (2011). MHI’s energy efficient flue gas CO2 capture technology and large scale CCS demonstration test at coal-fired power plants in USA. Mitsubishi Heavy Industries Technical Review, 48(1), 26.

    Google Scholar 

  44. Godec, M., Koperna, G., Petrusak, R., & Oudinot, A. (2013). Potential for enhanced gas recovery and CO2 storage in the Marcellus shale in the Eastern United States. International Journal of Coal Geology, 118, 95–104.

    Google Scholar 

  45. Van Hemert, P., Bruining, H., Rudolph, E. S. J., Wolf, K. -H. A., & Maas, J. G. (2009). Improved manometric setup for the accurate determination of supercritical carbon dioxide sorption. Review of Scientific Instruments, 80(3), 035103–035103-11.

    Google Scholar 

  46. McCarty, R., & Arp, V. (1990). A new wide range equation of state for helium. Advances in Cryogenic Engineering, 35, 1465–1475.

    Google Scholar 

  47. Ross, D. J., & Marc Bustin, R. (2007) Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs. Fuel, 86(17), 2696–2706.

    Google Scholar 

  48. Span, R., & Wagner, W. (1996). A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data, 25, 1509.

    Article  Google Scholar 

  49. Wagner, W., & Span, R. (1993). Special equations of state for methane, argon, and nitrogen for the temperature range from 270 to 350 K at pressures up to 30 MPa. International Journal of Thermophysics, 14(4), 699–725.

    Article  Google Scholar 

  50. Gensterblum, Y., Van Hemert, P., Billemont, P., Battistutta, E., Busch, A., Krooss, B., et al. (2010). European inter-laboratory comparison of high pressure CO2 sorption isotherms II: Natural coals. International Journal of Coal Geology, 84(2), 115–124.

    Article  Google Scholar 

  51. Goodman, A., Busch, A., Duffy, G., Fitzgerald, J., Gasem, K., Gensterblum, Y., et al. (2004). An inter-laboratory comparison of CO2 isotherms measured on Argonne premium coal samples. Energy & Fuels, 18(4), 1175–1182.

    Article  Google Scholar 

  52. Sakurovs, R., Day, S., Weir, S., & Duffy, G. (2007). Application of a modified Dubinin-Radushkevich equation to adsorption of gases by coals under supercritical conditions. Energy & Fuels, 21(2), 992–997.

    Article  Google Scholar 

  53. Staib, G., Sakurovs, R., & Gray, E. M. A. (2013). A pressure and concentration dependence of CO2 diffusion in two Australian bituminous coals. International Journal of Coal Geology, 116, 106–116.

    Article  Google Scholar 

  54. Yu, H., Guo, W., Cheng, J., & Hu, Q. (2008). Impact of experimental parameters for manometric equipment on CO2 isotherms measured: Comment on “Inter-laboratory comparison II: CO2 isotherms measured on moisture-equilibrated Argonne premium coals at 55 °C and up to 15 MPa” by Goodman et al.(2007). International Journal of Coal Geology, 74(3), 250–258.

    Google Scholar 

  55. Carroll, J. J., & Mather, A. E. (1992). The system carbon dioxide-water and the Krichevsky-Kasarnovsky equation. Journal of Solution Chemistry, 21(7), 607–621.

    Article  Google Scholar 

  56. Enick, R. M., & Klara, S. M. (1990). CO2 solubility in water and brine under reservoir conditions. Chemical Engineering Communications, 90(1), 23–33.

    Article  Google Scholar 

  57. Parkinson, W. J., & De Nevers, N. (1969). Partial molal volume of carbon dioxide in water solutions. Industrial and Engineering Chemistry Fundamentals, 8(4), 709–713.

    Article  Google Scholar 

  58. Duncan, M. S., & Agee, C. B. (2011). The partial molar volume of carbon dioxide in peridotite partial melt at high pressure. Earth and Planetary Science Letters, 312(3), 429–436.

    Article  Google Scholar 

  59. Huang, X., Margulis, C. J., Li, Y., & Berne, B. J. (2005). Why Is the partial molar volume of CO2 so small when dissolved in a room temperature ionic liquid? structure and dynamics of CO2 dissolved in [Bmim +][PF6-]. Journal of the American Chemical Society, 127(50), 17842–17851.

    Article  Google Scholar 

  60. Jalili, A. H., Mehdizadeh, A., Shokouhi, M., Ahmadi, A. N., Hosseini-Jenab, M., & Fateminassab, F. (2010). Solubility and diffusion of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. The Journal of Chemical Thermodynamics, 42(10), 1298–1303.

    Article  Google Scholar 

  61. Kumełan, J., Tuma, D., & Maurer, G. (2009). Partial molar volumes of selected gases in some ionic liquids. Fluid Phase Equilibria, 275(2), 132–144.

    Article  Google Scholar 

  62. Kamiya, Y., Naito, Y., & Bourbon, D. (1994). Sorption and partial molar volumes of gases in poly (ethylene-co-vinyl acetate). Journal of Polymer Science Part B: Polymer Physics, 32(2), 281–286.

    Article  Google Scholar 

  63. Rother, G., Krukowski, E. G., Wallacher, D., Grimm, N., Bodnar, R. J., & Cole, D. R. (2011). Pore size effects on the sorption of supercritical CO2 in mesoporous CPG-10 silica. The Journal of Physical Chemistry C, 116(1), 917–922.

    Article  Google Scholar 

  64. Gmelin, L. (1973). Gmelin Handbuch der anorganischen Chemie, 8. Auflage. Kohlenstoff, Teil C3, Verbindungen, ISBN 3-527-81419-1.

    Google Scholar 

  65. Chareonsuppanimit, P., Mohammad, S. A., Robinson, R. L, Jr, & Gasem, K. A. (2012). High-pressure adsorption of gases on shales: Measurements and modeling. International Journal of Coal Geology, 95, 34–46.

    Article  Google Scholar 

  66. Gasparik, M., Bertier, P., Gensterblum, Y., Ghanizadeh, A., Krooss, B. M., & Littke, R. (2013). Geological controls on the methane storage capacity in organic-rich shales. International Journal of Coal Geology, 123, 20–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roozbeh Khosrokhavar .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khosrokhavar, R. (2016). Sorption of CH4 and CO2 on Belgium Carboniferous Shale Using a Manometric Set-up. In: Mechanisms for CO2 Sequestration in Geological Formations and Enhanced Gas Recovery. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-23087-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23087-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23086-3

  • Online ISBN: 978-3-319-23087-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics